
Large-data limit of the MBO scheme

for data clustering

Tim Laux

Hausdor↵ Center for Mathematics & Institute for Applied Mathematics

University of Bonn

Mathematical aspects of interfaces and free boundaries

Preliminary meeting for the 81st Fujihara seminar

June 6, 2023

Joint work with Jona Lelmi (U Bonn)



Data clustering



Data clustering



Data clustering



Similarity graph

Given data points x1, . . . , xn 2 Rd w/ pairwise distances |xi � xj |.
Goal: Understand “structure”, e.g. find clusters.
Define similarity graph

Gn = (Vn,Wn),

with vertices Vn = {x1, . . . , xn}
and edge weights Wn = (wi,j)i,j

wi,j := ⌘
�
|xi � xj |

�
, i 6= j,

wi,i := 0.
Profile ⌘ non-increasing. Typical choices are

⌘(s) = exp(�s), ⌘(s) = exp(�s2), ⌘(s) = 1[0,1](s).

⌘(s)

s



Graph Laplacian

For a weighted graph Gn = (V,W ), define the graph Laplacian:

�n = I �D�1W.

Here, D = diag(d1, . . . , dn), where

di =
nX

j=1

wi,j

denotes the degree of a vertex xi.
The Laplacian �n is a non-negative self-adjoint operator w.r.t. the
scalar product on V = {u : V ! R}:

hu, viV =
nX

i=1

diuivi.

Example. On lattice Zd: di↵erence quotients for Laplacian.



Example: MNIST data set

⇠ 50, 000 images of hand-written digits 0, 1, . . . , 9.

I Each image x is a
(28⇥ 28)-pixels gray-scale
image.

I x 2 Rd with d = 282 ⇡ 1000.



MBO scheme for data clustering

Given similarity graph Gn = (Vn,Wn)
with (positive) graph Laplacian �n.
Goal: Find clusters (⌦, Vn \ ⌦).

Algorithm (Merkurjev-Kostić-Bertozzi ’13; Merriman-Bence-Osher ’92)

Given time step size h > 0 and an old cluster ⌦ ⇢ Vn, obtain new
cluster ⌦0 by:

1. Di↵usion step: � := e�h�n1⌦.

2. Thresholding step: ⌦0 :=
�
� > 1

2

 
.

! ! !



Precise setting

We will work under the manifold assumption:
Assume that data is distributed on a submanifold (M, g) of Rd.
Precisely:

I Let (M, g) be a smooth closed k-dim submanifold of Rd.

I Let ⌫ = ⇢VolM 2 P(M) be a prob. meas. on M with ⇢ > 0.

I Let the data points {xi}i2N be iid random variables ⇠ ⌫.

Then we consider the scaled graphs

Gn," = (Vn,Wn,"),

with vertices Vn = {x1, . . . , xn}, and edge weights

wi,j :=
1

"k
⌘
⇣
|xi � xj |

"

⌘
, i 6= j,

wi,i := 0.

The graph Laplacian then is �n," =
1
"2

�
In �

1
nD

�1
n,"Wn,"

�
.



Gradient-flow structure

[Esedoğlu-Otto ’15], [v.Gennip-Guillen-Osting-Bertozzi ’14]

Each step decreases the graph heat content energy

En,"
h (�) =

1
p
h

⌦
1� �, e�h�n,"�

↵
Vn
.

More precisely, each step of MBO is equivalent to

�` 2 argmin
�

n
En,"

h (�)� En,"
h (�� �`�1)

o
.

Question: What is the e↵ective
behavior of (local) minimizers of
the energy En,"

h when

n � 1, "⌧ 1, h ⌧ 1 ?

En,"n
h Eh

E

n ! 1

h # 0
?

Known: " and h have to be su�ciently large!
Otherwise, scheme gets pinned/frozen [Bertozzi et al. ’14].



1st main result: large data limit n ! 1, " ! 0

Theorem 1 (L., Lelmi ’21)

In the regime log(n1/k)
⇣

1
n1/k

⌘ k
k+2

⌧ "n ⌧ 1 it holds almost

surely

En,"n
h

�(weak-TL2)
�! Eh,

where

Eh(u) =
1
p
h

Z

M
(1� u)e�h�M,⇢2u ⇢2dVolM

for u : M ! [0, 1]; and Eh(u) = +1 otherwise.

Here,  = (⌘) and the Laplacian �M,⇢2 on(M, g, ⇢2) is given by

�M,⇢2u = �
1

⇢2
div⇢2ru.



2nd main result: sharp interface limit h ! 0

Theorem 2 (L., Lelmi ’21)
As h ! 0 it holds

Eh
�(strong-L1)

�! E,

where

E(�) =
1
p
⇡
|D�|⇢2(M)

for � : M ! {0, 1}; and E(�) = +1 otherwise.

We may also write

E(�) =
1
p
⇡

Z

@⇤{�=1}
⇢2dHk�1.

This means, (local) minimizers of E are minimal surfaces in the
weighted manifold (M, g, ⇢2).



Recap of main results

Theorem 1 (L., Lelmi ’21)
Large-data limit, or,
discrete to non-local.

Theorem 2 (L., Lelmi ’21)
Sharp-interface limit, or,
non-local to local.

En,"n
h Eh

E

Thm 1

Thm 2

Generality of results:

I arbitrary number of clusters (for simplicity in this talk only 2)

I di↵erent “surface tension” between di↵erent labels
I external forcing/drift f :

I e�cient algorithm: change threshold value from 1
2 to 1

2 �

p
hp
⇡
f

I simple analysis: additional term in energy �
1p
⇡
hf,�iVn

I Other variants of graph Laplacians



A word on TL2

As un : Vn ⇢ M ! R and u : M ! R live in di↵erent spaces, we
cannot immediately compare un to u.

Helpful analytical tool: optimal transport.
Let Tn : M ! Vn be “nice” optimal transport maps.
[Garćıa Trillos, Slepčev ’16]: In this case we have

un ! u in TL2
, un � Tn ! u in L2(M).

For our case, we introduce weak TL2 convergence. We have

un * u weakly in TL2
, un � Tn * u weakly in L2.

This is the natural space, because our sequence un will be only
pre-compact in the weak topology of TL2.



Elements of proof: large-data limit

In fact we prove a stronger statement:

Proposition
In the setting of Theorem 1, let un 2 Vn be a sequence of

functions converging weakly to u 2 L2(M) in TL2
, then for

every t > 0 we have

lim
n!+1

e�t�n,"nun = e�t�M,⇢2u strongly in TL2.

Idea [De Giorgi; Sandier–Serfaty; AGS; ...]: solutions to
di↵usion/heat equation are characterized by optimal energy
dissipation relation

1
2krnvn(t)k

2
Vn

+ 1
2

Z t

0

�
k�nvn(s)k

2
Vn

+ k
d
dsvn(s)k

2
Vn

�
ds  1

2krnunk
2
Vn

,

in which we can pass to the limit by lower semi-continuity, which
identifies the limit and gives regularity.



Elements of proof: large-data limit (cont’d)

As a direct consequence, we have the following sharper version of
the �-convergence:

Corollary

In the setting of the proposition, limn!1En,"n
h (un) = Eh(u).

We also give a positive answer to a question of [Bertozzi et al. ’14]:

Corollary

If additionally ūn * ū, then the min. mov. functional converges:

lim
n!1

�
En,"n

h (un)� En,"n
h (un � ūn)

�
= Eh(u)� Eh(u� ū).

In particular,

MBO on (Vn,Wn,"n) converges to MBO on (M, g, ⇢2).



Background on sharp-interface limit h # 0

To study the asymptotic behavior of

Eh(u) =
1
p
h

Z

M
(1� u)e�h�M,⇢2u ⇢2dVolM

is a challenging mathematical problem, see e.g.

I [Alberti, Bellettini ’98]

I [Miranda, Pallara, Paronetto, Preunkert ’07a]

I [Esedoğlu, Otto ’15]

Much easier question [MPPP ’07b]: convergence of

Fh(u) =

Z

M

��re�h�M,⇢2u
��⇢2 dVolM .

Also sparks interest in the context of

I Metric geometry [De Ponti, Mondino ’20]

I Sub-Riemannian geometry [Agrachev, Rossi, Rizzi ’20, ’21, ’22]



MBO & comparison principle

Comparison principle for MCF

Let @⌦(t), @e⌦(t) ⇢ (M, g, ⇢2) move by
mean curvature flow. Then for any
t > 0:

⌦(0) ⇢ e⌦(0) ) ⌦(t) ⇢ e⌦(t).

[Chen, Giga, Goto ’91], [Evans, Spruck ’91]

Comparison principle for MBO

Let ⌦`, e⌦` be obtained by the MBO
scheme. Then for any ` 2 N:

⌦` ⇢ e⌦` ) ⌦`+1
⇢ e⌦`+1.

e⌦(t)
⌦(t)

Proof: Write � = �⌦` , �̃ = �⌦̃` . Then

�  �̃ =) e�h��  e�h��̃ =) H(e�h��)  H(e�h��̃). ⇤



Abstract convergence result

Theorem 3 (L., Lelmi ’22)
Suppose that

(i) For all u, v 2 Vn

u  v ) Sn(hn)u  Sn(hn)v + k(u, v)kVn,1O(h
3
2
n ).

(ii) For all f 2 C1(M)

kSn(hn)f�e�hn�⇢2fk1,Vn = kfk1o(h
1
2
n )+krfk1O(h

3
2
n ).

(iii) kSn(hn)1� 1k1,Vn = O(h
3
2
n ).

Then the MBO scheme with Sn(t) instead of e�t�n converges

to the unique viscosity solution of MCF on (M, g, ⇢2).

Assumption (iii) is only needed to check initial conditions.
(Seems to have been overlooked in the past.)



Application to random geometric graphs

Theorem 4 (L., Lelmi ’22)
Let Gn be a random geometric graph.

Assume that q,↵,� > 0 are suitably chosen and

(i) hn � (log(n))�↵.

(ii)
⇣
log(n)
n1/k

⌘ k
k+4 . "n ⌧ (log(n))�� .

(iii) Kn � (log(n))q.

(iv) The eigenvalues of �⇢2 satisfy infi2N(�i � �i�1) > 0.

Then the operators e�t�n and e�t�nPh n
1 ,..., 

n
Kn

i satisfy con-

ditions (i), (ii), and (iii) in Theorem 3 (prev. slide) with prob-

ability greater than

1� C"�6k
n exp(�

n"k+4
n

C
)� Cn exp(�

n

CK2
n
).



Convergence of MBO to MCF

Combining Theorems 3 and 4 from the previous slides:

Corollary

In the scaling regime of Theorem 4, the MBO scheme (with or

without frequency cut-o↵) on random geometric graphs converges

to the mean curvature flow on (M, g, ⇢2) in probability.

Remark

I Can apply Theorem 3 on Gn = "nZ2 to recover convergence
result of [Misiats, Yip ’16] + initial conditions.

I Mean curvature flow in (M, g, ⇢2) takes the form

V = �
1

⇢2
div(⇢2⌫) = �H � ⌫ ·r log ⇢2.

This PDE is driven by surface tension + density.



Ingredient: new heat kernel estimates

More precisely, the frequency cut-o↵ at K can be expressed as

e�t�nPh n
1 ,..., 

n
Kiu(x) =

X

y2Vn

HK
n (t, x, y)u(y),

where HK
" is the truncated heat kernel

HK
n (t, x, y) =

KX

i=1

e�t�ni  n
i (x) 

n
i (y)

dn(y)

n
.

Lemma
In the setting of Theorem 4, for n � 1,

max
x,y2Vn

����H
Kn
n (hn, x, y)�

⇢(y)

n
H(hn, x, y)

���� = o

✓p
hn
n

◆
.

This improves the recent work [Dunson, Wu, Wu: ACHA ’21] on
heat kernel estimates.



Summary

I Intuitively, MBO finds local minimizers of the graph heat
content energy En,"

h .
I Our results show: local minimizers are close to local

minimizers of the area functional E on (M, g, ⇢2).
I The energy landscape is highly non-convex, hence we expect

to have many local minimizers.
I Our results show: MBO-dynamics converge to (viscosity

solution of) mean curvature flow in (M, g, ⇢2).

I T.L., Jona Lelmi: Large data limit of the MBO scheme for
data clustering: �-convergence of the thresholding energies
arXiv:2112.06737 [math.AP]

I T.L., Jona Lelmi: Large data limit of the MBO scheme for
data clustering: convergence of the dynamics
arXiv:arxiv:2209.05837 [math.AP]

Thank you for your attention!
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