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Outline

o Surface Navier-Stokes equations
@ Well-posedness of tangential surface NS equations.

@ Discretization method

Applications/related work:
Fluid deformable surfaces: talk of A. Voigt (tuesday June 6th).

We consider only viscous surface flows, no bending energies, no
multiphase.
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Modeling of fluidic evolving surfaces

[P1] Hu, Zhang, and E, Continuum theory of a moving membrane,
Phys. Rev. E (2007)

[P2] Jankuhn, Olshanskii, AR,
Incompressible fluid problems on embedded surfaces: Modeling and
variational formulations, IFB (2018)

[P3] Koba, Liu, Giga,
Energetic variational approaches for incompressible fluid systems on an

evolving surface,
Quart. Appl. Math. (2017)

[P4] Miura,
On singular limit equations for incompressible fluids in moving thin
domains, Quart. Appl. Math. (2017)

[P5] Nitschke, Reuther, Voigt,
Hydrodynamic interactions in polar liquid crystals on evolving surfaces,
Phys. Rev. Fluids (2019)
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A. Physical principles
@ Volume mass/momentum conservation + thin film limit [P4], [P5].
e Surface mass/momentum conservation [P1], [P2].

e Energetic principles [P3].



Modeling aspects

A. Physical principles
@ Volume mass/momentum conservation + thin film limit [P4], [P5].
@ Surface mass/momentum conservation [P1], [P2].

e Energetic principles [P3].

B. Mathematical representation
@ Local coordinate system: curvilinear coordinates.

@ Global Cartesian coordinate system.
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Modeling aspects

A. Physical principles
@ Volume mass/momentum conservation + thin film limit [P4], [P5].
@ Surface mass/momentum conservation [P1], [P2].

e Energetic principles [P3].

B. Mathematical representation
@ Local coordinate system: curvilinear coordinates.
@ Global Cartesian coordinate system.

~~ resulting equations look (very) different.

Overview paper: P. Brander, AR, P. Schwering,
On derivations of evolving surface Navier—Stokes equations. |FB 2022

~> resulting equations are the same:
The evolving surface Navier-Stokes equations.
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The surface NS equations

Surface differential operators: Vr, divr. Normal vector: n.
Velocity u = ut 4+ uy = ut + uyn, surface pressure p. Density p := 1.
Material derivative: u = d;u® + u - Vue (along space-time surface).

Rate of strain tensor E(u) = %(Vru +VruT), k: mean curvature.
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The surface NS equations

Surface differential operators: Vr, divr. Normal vector: n.

Velocity u = ut 4+ uy = ut + uyn, surface pressure p. Density p := 1.
Material derivative: U = d;u® + u - Vu® (along space-time surface).
Rate of strain tensor E(u) = %(Vru +VruT), k: mean curvature.

Full surface NSE (for f =0 ) on '(¢): u, p such that

U — 2udivrE(u) + prn+ Vip =0
dinu =0

Note: uy = uyn defines '(t) (free surface problem).
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The surface NS equations

Surface differential operators: Vr, divr. Normal vector: n.
Velocity u = ut 4+ uy = ut + uyn, surface pressure p. Density p := 1.
Material derivative: U = d;u® + u - Vu® (along space-time surface).

Rate of strain tensor E(u) = %(Vru +VruT), k: mean curvature.

Full surface NSE (for f =0 ) on '(¢): u, p such that

U — 2udivrE(u) + prn+ Vip =0
dinu =0

Note: uy = uyn defines '(t) (free surface problem).

Well-posedness of this free surface Navier-Stokes system: open problem
Collaboration with H. Abels (work in progress)

Extensive analysis for Navier-Stokes on stationary surfaces/manifolds:
[Arnold], [Ebin-Marsden],...
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Huge simplification: uy =: wy = wyn given (i.e. ['(t) given).
Tangential projection of full system, P:=1—nn', H:=: Vrn.

Material derivative along normal flow wp: 0°.

PO°ur + wyHut + (Vrur)ur — 2uP divrE(ut) + Vip =f
dinuT =g




Tangential surface NS

Huge simplification: uy =: wy = wyn given (i.e. ['(t) given).
Tangential projection of full system, P:=1—nn', H:=: Vrn.

Material derivative along normal flow wp: 0°.

Tangential surface NS (TSNSE): ut, p such that on I(t):

Po°ur + wyHur + (Vrur)uT —2uP dinE(uT) +Vip=fFf
dinuT =g

Note: ut tangential to I'(t).
In the remainder: space-time variational formulation of TSNSE (g = 0).
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Outline of analysis

TSNSE unknowns: tangential velocity ur and pressure p.

Key points of analysis:

Smoothness assumptions on space-time surface S = U,¢[o, 711 (1)
Suitable evolving Hilbert spaces [Alphonse, Elliott, Stinner, 2015].
Relate different “material derivatives”.

Uniform in time key estimates (e.g., Korn inequality).

Mimic the standard approach for tensor space-time cylinder [Temam].
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Outline of analysis

TSNSE unknowns: tangential velocity ur and pressure p.
Key points of analysis:

@ Smoothness assumptions on space-time surface S = U,¢[o, 711 (1).
Suitable evolving Hilbert spaces [Alphonse, Elliott, Stinner, 2015].
Relate different “material derivatives”.

o
o
@ Uniform in time key estimates (e.g., Korn inequality).
o

Mimic the standard approach for tensor space-time cylinder [Temam].
Smoothness assumptions:
Mo =T(0) € C3. Geometric transport by w € C3([0, T] x R*,R?)

Normal flow map ®7 : g — I'(t) based on wy.

Reusken (RWTH Aachen) Tangential surface Navier-Stokes equations Fujihara seminar, June 8th, 2023 7 /20



We need pushforward map: v on g — ¢;v on ['(t).

J:=det(D®]), A:=J7IDO": TTy— TI(t)
(pev)(x):= A(t,z)v(z), z €T, x=7(z) €(t)

Property divrpv = 0 < divr(y(fev) = 0.




Evolving Hilbert spaces

We need pushforward map: v on g — ¢¢v on ['(t).

Surface Piola transform pushforward

J:=det(D®T), A:=JIDO!: Try — TI(t)
(pev)(x):= A(t,z)v(z), z €Ty, x=>}(z) €l(t)

Property divrov = 0 < divp(y(éev) = 0.

Spaces of tangential velocity fields on I'(t):

HY(t) :={ve H}(T(t))* |v-n=0 ae. on I(t)}
V(t):={ve H(t)| div)fv=0 ae. on T(t)}

V(t) :={ve CY(r(t)®|v-n=0, div)rv=0 on I(t)}
H(t):= V(o) Iz

Reusken (RWTH Aachen) Tangential surface Navier-Stokes equations Fujihara seminar, June 8th, 2023 8 /20



{V(t), d+}, {H(t), d+} are compatible pairs [Alphonse et al.]

Induce evolving spaces (generalization of standard Bochner spaces):

Ly ={(tu(r) e J {t} x V(1)

te[0,T]
$_()u(-) € L*(0, T; V(0))}

Similarly: L%ﬁ, Lf_,, L%/,, Lf_,_l.
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{V(t), d+}, {H(t), d+} are compatible pairs [Alphonse et al.]
Induce evolving spaces (generalization of standard Bochner spaces):

Ly ={(tu(r) e J {t} x V(1)

te[0,T]
¢_(yu(-) € L*(0, T; V(0))}
Similarly: L2, L2, 13, L2,_;.
Natural topology. Usual nice properties:
@ Hilbert spaces (canonical inner products)

@ Density of smooth functions

° L%/ — L%_, < L2, Gelfand triple, dense and compact embedding.
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Material derivatives

Recall:
Full material derivative v = 9;v€ 4+ u- Vv¢ (u: solution of full NS).
Normal material derivative 0°v = 0;v® + wy - Vv¢ (wy = up given).

Another Lagrangian derivative (used in [Alphonse et al.])

d*v(t) = oy (;Itqb_tv(t)) (“¢¢-derivative”)
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Recall:
Full material derivative v = 9;v® +u - Vv¢ (u: solution of full NS).

Normal material derivative 9°v = 0;v® + wy - Vv€ (wy = up given).

Another Lagrangian derivative (used in [Alphonse et al.])

*v(t) = oy <%¢—tv(t)> (“¢¢-derivative”)

9°v =20 —Cv, C:=A(0°A1)

A depends (only) on ®7.
Hence 0°v ~ 0*v.



Solution space:
W(V,V)={vel} |dvell }.

Use 0° ~ 0* and [Alphonse et al.] =
W(V, V') has the same properties as in ® case.



Variational formulation

Solution space:
WV, V)={vel} |dveli }.

Use 0° ~ 9* and [Alphonse et al.] =
W(V, V') has the same properties as in ® case.

Notation: fOT Jrpyu-vdsdt =: (u,v)s.

a(u,v) :=2u(E(u), E(v))s, c(u,a,v) :=((Vru),v)s,
l(u,v) ;= (wyHu,v)s

Variational formulation of TSNSE

Given f = fr € L2(S)3, up € H(0), find ur € W(V, V') such that
ur(0) = up and

(0°ut,v) + L(ur,v) + c(ur,ur,v) + a(ur,v) = (f,v)s forall ve L.
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Analysis of well-posedness

Differences to ® case: “other” spaces, 0° instead of %, (-, ) term.

Uniform estimates (Korn, inf-sup, interpolation/Ladyzhenskaya) |

V[l e (reey) < C(||VHL2(F(t)) + [[E(v)|l 2 t))) for all v € H'(t)
Jr(ry pdivrvds

sup

> clpllz, Vpe (), [ p=0
oveH(t)  IVIlH 1() r(t)

V][ Lareey) < CHVHLz r()) HVHH1 r)y V€ HY(T(t)) (2D surface)

with ¢ > 0 independent of t € [0, T].
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I. Feado-Galerkin approximation:
m ~ ~
up = Zg,-,m(t)zb,-, with countable basis {1;} of V/(t).
i=1

PO°t); = 0"th; — Cp; = —C;.

Existence of g; m solution via ODE theory.



Follow the approach of [Temam]| for ® case

l. Feado-Galerkin approximation:
up = Zg,-,m(t){p,-, with countable basis {1;} of V(t).
i=1
P8°1~pi = 8*17’,' - C"Zi = _C{Z’i-

Existence of gj m solution via ODE theory.
I1. A-priori bounds for up, (use uniform estimates), e.g.
omax[[umllizqrey) + [E(Um)liizgs) < [fllizs) + uollzro)

Note: term £(-,-) does not cause difficulties.
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Follow the approach of [Temam]| for ® case

l. Feado-Galerkin approximation:

up = Zg,-,m(t){p,-, with countable basis {1;} of V(t).
i=1

P8°1~pi = 8*17’,' - C"Zi = _C{Z’i-
Existence of gj m solution via ODE theory.
I1. A-priori bounds for up, (use uniform estimates), e.g.

omax[[umllizqrey) + [E(Um)liizgs) < [fllizs) + uollzro)

Note: term £(-,-) does not cause difficulties.
1. Existence of solution u: boundedness and compactness arguments.

IV. Uniqueness of solution u: uniform interpolation estimate, uniform
Korn inequality and Gronwall argument.
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Mixed weak formulation of TSNSE

Given f =fr € L2( )3, up € H(0), find ur € W(H*, H1) with
ur(0) = ug, p € L*(S) with ¢ (yPds=0ae. t€l0,T] such that

(0°ut,v) +L(ur,v) + c(ur,uT,V)
+ a(ur,v) + (p, divrv)s = (f,v)s forall ve Lf_,l
(g, divrut)s =0 forall g€ LZ(S).
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Mixed weak formulation of TSNSE

Given f =fr € L2( )3, up € H(0), find ur € W(H*, H1) with
ur(0) = ug, p € L2(S) with J; (yPds=0ae. t€l0,T] such that
(0°ut,v) +L(ur,v) + c(ur,uT,V)
+ a(ur,v) + (p, divrv)s = (f,v)s forall ve L2,
(g, divrur)s =0 for all g€ L%(S).

Theorem

This problem is well-posed.

Proof essentially the same as in ® case, based on uniform inf-sup property
and closed range theorem.

Note: global result and no "smallness” condition.

Reusken (RWTH Aachen) Tangential surface Navier-Stokes equations Fujihara seminar, June 8th, 2023 14 /20



Comparison of methods for stationary surfaces:
[Brandner et al., Finite element discretization methods for velocity-pressure and
stream function formulations of surface Stokes equations, SISC 2022]



Discretization methods

Comparison of methods for stationary surfaces:
[Brandner et al., Finite element discretization methods for velocity-pressure and
stream function formulations of surface Stokes equations, SISC 2022]

For smoothly evolving surfaces: ESFEM (Dziuk-Elliott),
cf. Talk of A. Voigt,

Alternative for evolving surfaces with topological singularities (droplet
pinch-off): TraceFEM.
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Discretization methods

Comparison of methods for stationary surfaces:
[Brandner et al., Finite element discretization methods for velocity-pressure and
stream function formulations of surface Stokes equations, SISC 2022]

For smoothly evolving surfaces: ESFEM (Dziuk-Elliott),
cf. Talk of A. Voigt,

Alternative for evolving surfaces with topological singularities (droplet
pinch-off): TraceFEM.

Error analysis for surface (Navier-)Stokes:
available only for TraceFEM and Stokes on stationary surface.

Recent work: error analysis of TraceFEM for TSNSE.

Reusken (RWTH Aachen) Tangential surface Navier-Stokes equations Fujihara seminar, June 8th, 2023 15 /20



TraceFEM for TSNSE

Based on TraceFEM (available in NGSolve). Key ingredients:
@ Level set representation:

M(t) ={x€R3: ¢(t,x) =0}

o ¢n = b, Th(t) = {x € R : ¢p(t,x) =0} given. I :=Ty(tn).
In practice: parametric TraceFEM [Lehrenfeld].
@ Outer shape regular triangulation 7. Narrow bands

wp = U{KeTh: KNTh#0}, O5(p) Duf.
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TraceFEM for TSNSE

Based on TraceFEM (available in NGSolve). Key ingredients:
@ Level set representation:

M(t) ={x€R3: ¢(t,x) =0}

o ¢n = b, Th(t) = {x € R : ¢p(t,x) =0} given. I :=Ty(tn).
In practice: parametric TraceFEM [Lehrenfeld].
@ Outer shape regular triangulation 7. Narrow bands

wp = U{KeTh: KNTh#0}, O5(p) Duf.

e standard FE spaces Uy, Qp on Tj, (e.g. Hood-Taylor)
Up:={vlo;rm |veUr}, Qp={qlulqgeQn}
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Discretization method: one time step BDF1

For given uz_l € Uz_l find u € U, pp € Qp, such that ¥V v, € Uj:

1 [ n—1 n1
+3 /r,,(”h -V, Prup) - vy — (up™" - Vi, Ppvp) - up dsy
“'h

—i—2u /r” Eh(Pth) : Eh(Pth) dSh + 7'/ (ﬁh . uZ)(ﬁh . Vh) CISh
h

rn

h

penalty for n-u"=0

—i—/ Vr,pp - vp dsy + pu/ (np - Vui)(np - Vvg) dx = / f-v,dsy
rn 05T rn

h

stabilization and constant extension
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Discretization method: one time step BDF1

For given uz_l € Uz_l find u € U, pp € Qp, such that ¥V v, € Uj:

1 [ n—1 n1
+3 /r”(”h -V, Prup) - vy — (up™" - Vi, Ppvp) - up dsy
“'h

+2,U‘ /r” Eh(Pth) : Eh(Pth) dSh + 7'/ (ﬁh . uﬂ)(ﬁh . Vh) CISh
h

rn

h

penalty for n-u"=0

—i—/ Vr,pp - vp dsy + pu/ (np - Vui)(np - Vvg) dx = / f-v,dsy
rn 05T rn

h

stabilization and constant extension

+0p [ (nn - Vp)(n - Van)dx =0 ¥ gy € Q.

r

pressure stabilization
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Discretization error analysis

Scaling of penalty and stability parameters based on analysis:
TNh_za puNh_lv pPNh

Finite element spaces:

For geometry: ¢}, piecewise Py.

For (u, p): Hood-Taylor Ppy1 — Py, m > 1.

A natural energy norm | - || is used. Weak CFL-type condition At < h.
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Discretization error analysis

Scaling of penalty and stability parameters based on analysis:
TNh_za puNh_lv pPNh

Finite element spaces:
For geometry: ¢}, piecewise Py.
For (u, p): Hood-Taylor Ppy1 — Py, m > 1.

A natural energy norm | - || is used. Weak CFL-type condition At < h.
Velocity error estimate

uCtn, ) — 0l arny + AL S u(te, ) — whlP < (AL 4 B 4 p29)
k=1
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Discretization error analysis

Scaling of penalty and stability parameters based on analysis:
TNh_za puNh_lv pPNh

Finite element spaces:
For geometry: ¢}, piecewise Py.
For (u, p): Hood-Taylor Ppy1 — Py, m > 1.

A natural energy norm | - || is used. Weak CFL-type condition At < h.
Velocity error estimate

uCtn, ) — 0l arny + AL S u(te, ) — whlP < (AL 4 B 4 p29)
k=1

@ Analysis includes geometry approximation

@ The error bound is optimal

@ Also an optimal bound for the pressure error is derived
@ Analysis can be extended to BDF2 (At? ~ At?)
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PO°ur + wyHur + (Vrur)ur — 2uP divrE(ut) + Vip =f
dinuT = —WpNK

with f = 24P divr(wyH) + 3Vrw}.

Flow is completely “geometry driven”




Remarks

Research partly funded by DFG:
Research Unit 3013 “Vector- and Tensor-Valued Surface PDEs”

Collaborations with Axel Voigt et al. (TU Dresden).
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