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Volume-preserving mean curvature flow

Find evolving surface 3(¢) such that
V=—H+)X on (1),
where

V =V (x,t) = normal velocity,

d—1

H = H(:c,t) — mean curvature = Z/ﬁ,
i=1
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Gradient-flow structure
Energy: E[Y] = HIL(D),
State space: M={Z =00 CR*||Q =m},
Tangent space: Ty M = {V: > — R‘ fz VdAdH! = O},
Metric tensor:  (V, W)y = [ VIW dH* L.



Gradient-flow structure
Energy: E[Y] = HIL(D),
State space: M={Z =00 CR*||Q =m},
Tangent space: Ty M = {V: > — R‘ fz VAH! = 0},
Metric tensor:  (V, W)y = [ VIW dH* L.
Indeed, if 3(¢) is a smooth solution of V = —H + ), then
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—|Q(t :/ VdaH* ! =0,
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and hence
Q(t)] = [Q(0)] =: m.



Motivation & Applications

» Geometry: Simplest area-decreasing geometric
flow that preserves the enclosed volume
|Gage '86, Huisken '87, Escher-Simonett '98]

» PDE: Appears as sharp-interface limit of
reaction-diffusion systems
[Rubinstein—-Sternberg '92, Chen—Hilhorst-Logak 10,
Bronsard—Stoth '97, L.—Simon '18, Takasao '17, '22] |

» Materials Science: Basic model for Ostwald
ripening; efficient method: thresholding/MBO
scheme proposed by [Ruuth—Wetton '03],
convergence proof by [L.—Swartz '17]

» Data Science: Arises as scaling limit of
algorithms in unsupervised and semi-supervised
learning [L.—Lelmi 21, L.—Lelmi "23],
[Jacobs—Merkurjev—Esedoglu '20, Kramer—L. '24+]




Simulation using thresholding
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Theorem (L. '22) 7 B
| Classical solutions are unique and stable in the class of all
distributional solutions.

The result is non-trivial because:

» there are many examples of physical non-uniqueness when
starting from singular configurations.

» There is no comparison principle, so uniqueness is subtle.
» Some weak solutions are fatally non-unique.

Follows in two steps:

Theorem 1. Any classical solution is a calibrated flow.

Theorem 2. Any calibrated flow is unique and stable in the class of
all distributional solutions.
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Notion of solution

Classical solution: evolving surface (X*(%))¢cjo 1 of class O3«
satisfying

V = —H"+ )" everywhere on ¥*(¢), for all t € |0, T].

Distributional solution: x = x(z,t) € L>((0,T); BV (R%{0,1})),
V =V(x,t) |[Vx|-measurable, A = \(t) measurable s.t.

2. (V-=MNVx=-V-((I4 - o5 @ <X)|Vx|)
' X d ™ Wx] © TWx[/IV X
3. Fora.e. T € (0,T)

BT+ [ vV ar < B, O))

4. Fora.e. t € (0,T), Jpax(-,t)dz = [pax(-,0)dx.
5. 2 € L (0,T).

loc
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[Fischer—Hensel-L.—Simon '24 JEMS]. This is a dynamic version of
the classical concept of calibrations. Here, we need to modify the
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Calibrated flows

New concept of gradient-flow calibrations, first introduced by
[Fischer—Hensel-L.—Simon '24 JEMS]. This is a dynamic version of
the classical concept of calibrations. Here, we need to modify the
concept to the volume-constrained case.

Key players:

» & extension of the normal vector field v*

» B: extension of the velocity vector field V*v*

» ). (truncation of) the signed distance function sdist(-, >*(¢)).

» \*: Lagrange-multiplier for volume constraint
Conditions:

» B (almost) transports £ and 9.

> B- &=V -&4+ N+ O(dist(-, X*(t)))

> |¢] < max{1 — C¥?, 0}

> V.- B=0(dist(-, X*(t)))
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Structure of proof: Two steps

Theorem 1. Any classical solution is a calibrated flow.

Key novelty: Don't want to extend V*v* in a trivial way! Instead,
want to enforce the local volume preservation condition

V-B=0 onX*t).
Ansatz: Take B(:,t) := Vy where ¢ solves
Ap =20 in 2*(¢),
v*(-,t) - Vi =V*(-,t) on X*(t) = 00Q*(1).

Theorem 2. Any calibrated flow is unique and stable in the class of
all distributional solutions.

|ldea: Monitor the relative energy

S0 = [ (e

and show %8 < C¥€.



Sharp-interface limit of Allen-Cahn

Phase-field [Golovaty '97] (based on [Rubinstein—Sternberg '92])
for preserved order-parameter:
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where W is a double-well potential, e.g.,
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Sharp-interface limit of Allen-Cahn

Phase-field [Golovaty '97] (based on [Rubinstein—Sternberg '92])
for preserved order-parameter:

e = A — éw'(ug) ()2 (), VW

where W is a double-well potential, e.g.,

W(u) = 3vV2u?(u —1)?,

and

_fRd(Aug — W' (ue))/2W (ue) d
fRd 2W (ue) dx '

Natural change of variables: ¢(u) = [;' \/2W (s) ds.

Preserves the natural order-parameter 1. = ¢ o u.:

d
- t) dz = 0.
dt Rd we(x’ ) o

Ae(t) :=



2nd Main Result: Sharp-interface limit

In the limit € | 0, we expect u.(x,t) — Xq)(x), where (%) is a
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| volume-preserving mean curvature flow (3(1)).cjo 1 exists, we
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2nd Main Result: Sharp-interface limit

In the limit ¢ | 0, we expect u.(x,t) — Xq)(x), where (%) is a
solution to volume-preserving mean curvature flow.
rThe/orem (Kromer & L. '23)

|

For well-prepared initial conditions, as long as a classical
| volume-preserving mean curvature flow (3(t));cjo,7) exists, we
have the optimal convergence rate

sup |9 (-, 1) — X llp ey < C(d, T, (2(2) )icjo,m) €
t€[0,7T]

Also follows from a Gronwall argument, here for the phase-field
relative entropy (cf. [Fischer—L.—Simon '20 SIMA])

Eolue, V(1) = Exlue (0] = | € V0. da.
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ldea of proof: Calibration & relative entropy

Key challenge in closing the Gronwall estimate %6’5 < C&;:
Estimating

Brr(t) = —/Rd {t}ﬁ-VBg(s\Vug\Q V) da.

Easy: Err(t) < C\/&:(t)

We need: Err(t) < CEL(t).
ldea: Have freedom in the choice of tangential component of B...
Ansatz: B = (Vv + X) oy where X is a tangential vector field

on X satisfying
dive X =VH —(VH) on .

This problem is underdetermined, so make the Ansatz X = Vyp
for a potential ¢ solving

Asp=VH—-(VH) onX.
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» Volume-preserving mean curvature flow is a fundamental
geometric evolution equation. Lacks a comparison principle!

» Nevertheless, gradient-flow calibrations yield uniqueness and
stability of flows.

» This concept also extends to higher-order flows: surface
diffusion V' = Ax H [Kroemer—L. '22]. Also here, the
incompressibility V - B = 0 is useful!

» Weak-strong uniqueness also for Mullins—Sekerka
flow [Fischer—Hensel-L.—Simon '24].

» Similar to [Hensel-L. '24 JDG], the proof here should also apply
for suitable varifold solutions (there, De Giorgi solutions), for
example the one in [Takasao "22].

» Boundary contact can be taken into account in the
unconstrained case [Hensel-L. '23 [UMJ] and is expected to
work here, too.



