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Volume-preserving mean curvature flow

Find evolving surface ⌃(t) such that

V = �H + � on ⌃(t),

where

V = V (x, t) = normal velocity,

H = H(x, t) = mean curvature =
d�1X

i=1

i,

� = �(t) :=
1

Hd�1(⌃(t))

Z

⌃(t)
H dHd�1.



Gradient-flow structure

Energy: E[⌃] = H
d�1(⌃),

State space: M =
�
⌃ = @⌦ ⇢ Rd

�� |⌦| = m
 
,

Tangent space: T⌃M
⇠=
�
V : ⌃ ! R

�� R
⌃ V dHd�1 = 0

 
,

Metric tensor: (V,W )⌃ =
R
⌃ VW dHd�1.

Indeed, if ⌃(t) is a smooth solution of V = �H + �, then

d

dt
E[⌃(t)] =

Z

⌃(t)
V (H � �(t)) dHd�1 = �

Z

⌃(t)
V 2 dHd�1

and
d

dt
|⌦(t)| =

Z

⌃(t)
V dHd�1 = 0,

and hence
|⌦(t)| = |⌦(0)| =: m.
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Motivation & Applications

I Geometry: Simplest area-decreasing geometric
flow that preserves the enclosed volume
[Gage ’86, Huisken ’87, Escher–Simonett ’98]

I PDE: Appears as sharp-interface limit of
reaction-di↵usion systems
[Rubinstein–Sternberg ’92, Chen–Hilhorst–Logak ’10,

Bronsard–Stoth ’97, L.–Simon ’18, Takasao ’17, ’22]

I Materials Science: Basic model for Ostwald
ripening; e�cient method: thresholding/MBO
scheme proposed by [Ruuth–Wetton ’03],
convergence proof by [L.–Swartz ’17]

I Data Science: Arises as scaling limit of
algorithms in unsupervised and semi-supervised
learning [L.–Lelmi ’21, L.–Lelmi ’23],

[Jacobs–Merkurjev–Esedoğlu ’20, Krämer–L. ’24+]
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Simulation using thresholding



1st Main Result: Weak-strong uniqueness

Theorem (L. ’22)

Classical solutions are unique and stable in the class of all
distributional solutions.

The result is non-trivial because:

I there are many examples of physical non-uniqueness when
starting from singular configurations.

I There is no comparison principle, so uniqueness is subtle.

I Some weak solutions are fatally non-unique.

Follows in two steps:

Theorem 1. Any classical solution is a calibrated flow.

Theorem 2. Any calibrated flow is unique and stable in the class of
all distributional solutions.
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Notion of solution

Classical solution: evolving surface (⌃⇤(t))t2[0,T ] of class C
3,↵

satisfying

V ⇤ = �H⇤ + �⇤ everywhere on ⌃⇤(t), for all t 2 [0, T ].

Distributional solution: � = �(x, t) 2 L1((0, T );BV (Rd; {0, 1})),
V = V (x, t) |r�|-measurable, � = �(t) measurable s.t.

1. @t� = V |r�|

2. (V � �)r� = �r ·
�
(Id �

r�
|r�| ⌦

r�
|r�|)|r�|

�

3. For a.e. T 0
2 (0, T )

E[�(·, T 0)] +

Z

Rd⇥(0,T 0)
V 2

|r�| dt  E[�(·, 0)].

4. For a.e. t 2 (0, T ),
R
Rd �(·, t) dx =

R
Rd �(·, 0) dx.

5. � 2 L2
loc(0, T ).



Notion of solution

Classical solution: evolving surface (⌃⇤(t))t2[0,T ] of class C
3,↵

satisfying

V ⇤ = �H⇤ + �⇤ everywhere on ⌃⇤(t), for all t 2 [0, T ].

Distributional solution: � = �(x, t) 2 L1((0, T );BV (Rd; {0, 1})),
V = V (x, t) |r�|-measurable, � = �(t) measurable s.t.

1. @t� = V |r�|

2. (V � �)r� = �r ·
�
(Id �

r�
|r�| ⌦

r�
|r�|)|r�|

�

3. For a.e. T 0
2 (0, T )

E[�(·, T 0)] +

Z

Rd⇥(0,T 0)
V 2

|r�| dt  E[�(·, 0)].

4. For a.e. t 2 (0, T ),
R
Rd �(·, t) dx =

R
Rd �(·, 0) dx.

5. � 2 L2
loc(0, T ).



Calibrated flows

New concept of gradient-flow calibrations, first introduced by
[Fischer–Hensel–L.–Simon ’24 JEMS]. This is a dynamic version of
the classical concept of calibrations. Here, we need to modify the
concept to the volume-constrained case.

Key players:

I ⇠: extension of the normal vector field ⌫⇤

I B: extension of the velocity vector field V ⇤⌫⇤

I #: (truncation of) the signed distance function sdist(·,⌃⇤(t)).

I �⇤: Lagrange-multiplier for volume constraint

Conditions:

I B (almost) transports ⇠ and #.

I B · ⇠ = �r · ⇠ + �⇤ +O(dist(·,⌃⇤(t)))

I |⇠|  max{1� C#2, 0}

I r ·B = O(dist(·,⌃⇤(t)))
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Structure of proof: Two steps

Theorem 1. Any classical solution is a calibrated flow.

Key novelty: Don’t want to extend V ⇤⌫⇤ in a trivial way! Instead,
want to enforce the local volume preservation condition

r ·B = 0 on ⌃⇤(t).

Ansatz: Take B(·, t) := r' where ' solves
(
�' = 0 in ⌦⇤(t),

⌫⇤(·, t) ·r' = V ⇤(·, t) on ⌃⇤(t) = @⌦⇤(t).

Theorem 2. Any calibrated flow is unique and stable in the class of
all distributional solutions.

Idea: Monitor the relative energy

E [�,⌃⇤](t) :=

Z

Rd⇥{t}
(1� ⇠ · ⌫)|r�|

and show d
dtE  CE .
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Sharp-interface limit of Allen-Cahn

Phase-field [Golovaty ’97] (based on [Rubinstein–Sternberg ’92])
for preserved order-parameter:

@tu" = �u" �
1

"2
W 0(u") + �"(t)

p
2W (u"),

where W is a double-well potential, e.g.,

W (u) = 3
p

2u2(u� 1)2,

and

W (u)

u10

�"(t) := �

R
Rd(�u" �

1
"2W

0(u"))
p
2W (u") dxR

Rd 2W (u") dx
.

Natural change of variables: �(u) =
R u
0

p
2W (s) ds.

Preserves the natural order-parameter  " = � � u":

d

dt

Z

Rd
 "(x, t) dx = 0.
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2nd Main Result: Sharp-interface limit

In the limit " # 0, we expect u"(x, t) ! �⌦(t)(x), where ⌦(t) is a
solution to volume-preserving mean curvature flow.

Theorem
For well-prepared initial conditions, as long as a classical
volume-preserving mean curvature flow (⌃(t))t2[0,T ] exists, we
have the optimal convergence rate

sup
t2[0,T ]

k "(·, t)� �⌦(t)kL1(Rd)  C(d, T, (⌦(t))t2[0,T ]) ".

Also follows from a Gronwall argument, here for the phase-field
relative entropy (cf. [Fischer–L.–Simon ’20 SIMA])

E"[u",⌃](t) := E"[u"(·, t)]�

Z

Rd
⇠ ·r " dx.
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Idea of proof: Calibration & relative entropy

Key challenge in closing the Gronwall estimate d
dtE"  CE":

Estimating

Err(t) = �

Z

Rd⇥{t}
⇠ ·rB⇠

�
"|ru"|

2
� |r "|

�
dx.

Easy: Err(t)  C
p
E"(t)

We need: Err(t)  CE"(t).
Idea: Have freedom in the choice of tangential component of B...
Ansatz: B = V ⌫ +X where X is a tangential vector field on ⌃
satisfying

div⌃X = V H � hV Hi on ⌃.

This problem is underdetermined, so make the Ansatz X = r⌃'
for a potential ' solving

�⌃' = V H � hV Hi on ⌃.
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Summary and outlook

I Volume-preserving mean curvature flow is a fundamental
geometric evolution equation. Lacks a comparison principle!

I Nevertheless, gradient-flow calibrations yield uniqueness and
stability of flows.

I This concept also extends to higher-order flows: surface
di↵usion V = �⌃H [Kroemer–L. ’22]. Also here, the
incompressibility r ·B = 0 is useful!

I Weak-strong uniqueness also for Mullins–Sekerka
flow [Fischer–Hensel–L.–Simon ’24].

I Similar to [Hensel–L. ’24 JDG], the proof here should also apply
for suitable varifold solutions (there, De Giorgi solutions), for
example the one in [Takasao ’22].

I Boundary contact can be taken into account in the
unconstrained case [Hensel–L. ’23 IUMJ] and is expected to
work here, too.
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