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Spirals by crystalline curvature flow

Consider evolution of spiral steps by crystalline curvature flow.
(Physical background: Crystal growth due to screw dislocation (cf. Burton–Cabrera–Frank(1951)))

(a)

TIME=0.600000

Settings:

• Ω ⊂ R2: bounded domain with smooth boundary

• a1, . . . , aN ∈ Ω: centers of spirals (screw dislocation)

• W = Ω \
⋃N

j=1Br(aj): the domain in where spirals are in.

• mj ∈ Z \ {0}: Signed number of steps provided by aj
• |mj |: number of steps
• mj > 0: counter-clockwise rotating when Vγ > 0

• Evolution equation
Vγ = −Hγ + f

Vγ , Hγ : normal velocity and curvature corresponding to the
surface energy density γ : R2 → [0,∞).

(Photo(a): I. Sunagawa and P. Bennema, Morphology of growth spirals: theoretical and experimental, Preparation and

properties of solid state materials 7, 1982.)
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Level set method for spirals
O(2003), O-Tsai-Giga(2015)

To describe the merging of spirals (not interfacial curve), we use the level set method.

m1 = −2, m2 = 2,
m3 = 1, m4 = 1.

Sheet structure function (Kobayashi(2010), Miura–Kobayashi(2015))

θ(x) =
N∑
j=1

mj arg(x− aj).

Level set formulation of spirals: (O(2003), O-Tsai-Giga(2015))

Γt = {x ∈W ; u(t, x)− θ(x) ≡ 0 mod 2πZ}, n = − ∇(u− θ)

|∇(u− θ)|

Anisotropic curvature and velocity:

Hγ = −div{ξ(∇(u− θ))} (ξ = ∇γ : Cahn-Hoffman vector), Vγ =
ut

γ(∇(u− θ))

(cf. Y. Giga, Surface Evolution Equations. A Level Set Approach, Birkhäuser, 2006.)
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Crystalline curvature flow for spirals

Hγ is a crystalline curvature ⇔ Wulff diagram (Equilibrium interface) is a convex polygon

Wulff diagram: Wγ = {p ∈ R2; γ◦(p) ≤ 1}, γ◦(p) = sup{p · q; γ(q) ≤ 1}.

→ It is natural to take γ◦(p) = max1≤j≤Nγ
ñj · p, and so is γ(= γ◦◦).

Level set equation of crystalline curvature flow for spirals� �
(E) ut − γ(∇(u− θ))

(
div{ξ(∇(u− θ))}+ f

)
= 0 in W × (0, T )

with the following assumptions.

(A1) γ ∈ C(R2) is convex,

(A3) γ is positively homogeneous of degree 1:
γ(λp) = λγ(p) for λ > 0, p ∈ R2

(A2) γ > 0 on S1,

(A4) γ is piecewise linear:
γ(p) = max1≤j≤Nγ nj · p.

Typical example: γ(p) = |p1|+ |p2| ⇒ Wγ = [−1, 1]2� �
Aim: propose a numerical method to solve (E).
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Pioneering works

• Front-tracking model (ODE system describing to evolution of facets)

Interface Angenent-Gurtin(1989), Taylor(1991)
Spiral Imai-Ishimura-Ushijima(1999, f ≡ 0), Ishiwata (2014), Ishiwata-O (2019)

• Level set method

Interface Giga-Giga(2001, 2D), Giga-Požár(2016, 3D) (Crystalline)
Spiral Smereka(2000), O(2003), O-Tsai-Giga(2015) (isotropic or smooth anisotropic

evolution)

• Minimizing movement approach:
• by Family of interior: Almgren-Taylor-Wang(1993), Luckhaus-Sturzenhecker(1995),

Almgren-Taylor(1995), ...
• with Level set method by signed distance: Chambolle(2004), Chambolle-Morini-Ponsiglione(2017),

Oberman-Osher-Takei-Tsai(2011)

Key idea: Apply Chambolle’s algorithm with general level set function instead of signed distance.
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Chambolle’s algorithm(2004)

Let Σ ⊂ Ω be an interfacial curve. Define the signed distance of Σ by

dγ(x,Σ) =

{
− infy∈Σ γ

◦(y − x) outside (n direction) of Σ,
infy∈Σ γ

◦(x− y) inside of Σ.

Find a minimizer w∗ of

E(w) =

∫
Ω

γ(∇w)dx+
1

2h
‖w − dγ(x,Σ)‖2L2 .

Then, the first variation of E(w) yields
δE

δw
= −div(ξ(∇w∗)) +

w∗ − dγ(x,Σ)

h
= 0, which implies

dγ(x,Σ) = −hdivDγ(∇u∗) = −h(−Hγ(∂{w∗ = 0})).

Then, set Sh(Σ) = {x; w∗(x) = 0} describes the motion of Σ by Vγ = −Hγ in a short time step
h > 0.

Difficulty for spirals: Spiral curve is not interfacial curve. ⇒ Signed distance cannot be available.
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Proposed algorithm (for spirals)

1 Let Σ0 be given by Σ0 = {x ∈W ; u0(x)− θ(x) ≡ 0 mod 2πZ} with u0 ∈ C(W ).

2 For given un (n ≥ 0), which possibly is not the distance function),
find the minimizer w∗ of

Eγ(w;un) =

∫
W

γ(∇(w − θ))dx−
∫
W

fwdx+
1

2h

∥∥∥∥∥ w − un√
γ(∇(un − θ))

∥∥∥∥∥
2

L2

.

Then, w∗ formally satisfies

− div{ξ(∇(w∗ − θ))} − f +
w∗ − un

hγ(∇(un − θ))
= 0

⇒ w∗ = un + hγ(∇(un − θ))
(
div{ξ(∇(w∗ − θ))}+ f

)
.

3 Thus, we set un+1 = w∗.

Then, Σn = {x ∈W ; un(x)− θ(x) ≡ 0 mod 2πZ} approximates the motion of spirals at t ≈ nh.
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Existence of minimizer

From analogy of BV semi-norm, define

Jγ(w) = sup

{
−
∫
W

wdivφdx−
∫
W

∇θ · φdx; φ ∈ C1
c (W ;R2), γ◦(φ) ≤ 1

}
for w ∈ L1(W ). (cf. Amar, Bellettini, Ann. Inst. Henri Poincaré sect. C, 11(1), 91-133 (1994).)

(Claim! Jγ(w) =

∫
W

γ(∇(w − θ))dx if w ∈W 1,1(W ).)

Theorem 1 (in preparation)

Assume that (A1)–(A3) hold. Let h > 0, f, g ∈ L2(W ), and ψ : W → [0,∞) satisfy a ≤ ψ ≤ A for
constants A, a > 0. Then, there exists a unique minimizer w∗ ∈ L2(W ) ∪BV (W ) of

Eγ(w; g) =

Jγ(w)−
∫
W

fwdx+
1

2h

∥∥∥∥w − g√
ψ

∥∥∥∥2
L2

if w ∈ L2(W ) ∩BV (W ),

+∞ otherwise.

Since w∗ ∈ BV (W ) has ∇w in the sense of Radon measure, we set ψ = max{a, γ(∇(w∗ − θ))} in numerics.
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Split Bregman method(1)

• We divide the variables of E(w; g) into “w-part” and “∇w-part” with penalty term:
Consider the functional of the form

(w, d) 7→
∫
W

γ(d−∇θ)dx−
∫
W

fwdx+
1

2h

∥∥∥∥w − g√
ψ

∥∥∥∥2
L2︸ ︷︷ ︸

=:F (w,d;g)

+
µ

2
‖d−∇w‖2L2

• Consider the Bregman iteration to find (w∗, d∗) = argmin(w,d) F (w, d; g) with subject to
d∗ = ∇w∗. In our case, it is rephrased as the following iteration:

(wk+1, dk+1) = arg min
(w,d)

(∫
W

γ(d−∇θ)dx−
∫
W

fwdx+
1

2h

∥∥∥∥w − g√
ψ

∥∥∥∥2
L2

+
µ

2
‖d−∇w − bk‖2L2

)
,

bk+1 = bk +∇wk+1 − dk+1.

Then, limk→∞(wk, dk) = (w∗, d∗) is the desired result.
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Split Bregman method(2): alternate iteration

Find the minimizer (wk+1, dk+1) by the following alternate iteration.

1 Initialize (wk
0 , d

k
0) = (wk, dk).

2 For given (wk
ℓ , d

k
ℓ ) (ℓ ≥ 0), find the minimizer

wk
ℓ+1 = argmin

w

{
−
∫
W

fwdx+
1

2h

∥∥∥∥w − g√
ψ

∥∥∥∥2
L2

+
µ

2
‖dkℓ −∇w − bk‖2L2

}
.

It is established by solving the following elliptic PDE:w − hµψ∆w = g + hψ
(
f − µdiv(dkℓ − bk)

)
in W,

∂w

∂ν⃗
= dkℓ − bk on ∂W.

3 Find the minimizer

dkℓ+1 = argmin
d

{∫
w

γ(d−∇θ)dx+
µ

2
‖d−∇wk

ℓ+1 − bk‖2L2

}
.

It is established by calculating the minimizer of integrant directly with (A4).

Then, (wk+1, dk+1) = limℓ→∞(wk
ℓ , d

k
ℓ ).
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Numerical accuracy

We compute the relative area difference A(t) = S(t)/|W | between our method and front-tracking
model by Ishiwata-O(2019) with several spatial mesh sizes ∆x.

Setting: regular triangular spiral

γ(p) = max
0≤j≤2

nj · p, nj =

(
cos

2j + 1

3
π, sin

2j + 1

3
π

)
Eq. : Vγ = 1− 0.01Hγ .

Domain : [0, 0.8]× ([−1.5, 1.5]2 \B2∆x(0))

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
(t
)

t

■ : ∆x = 0.02, ◦ : ∆x = 0.01,

• : ∆x = 0.0067, △ : ∆x = 0.005,

▲ : ∆x = 0.004.

(Claim: The difference is basically developed
from the center.)
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Example: merging

t = 0 t = 0.25 t = 0.39

t = 0.40 t = 0.5 t = 1

Numerical simulations: co-rotating case.

• Domain: [0, 1]× [−1.5, 1.5]2.

• Anisotropy: γ(p) = |p1|+ |p2| for p = (p1, p2). ⇒ Wγ = [−1, 1]2.

• Equation: Vγ = 1− 0.02Hγ .

• Centers: a1 = (−0.7, 0), a2 = (0.7, 0), m1 = m2 = 1.
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Application: interlace motion

Let Σ(t) has m-minor steps denoted by Σℓ(t) (ℓ = 0, 1, . . . ,m− 1), i.e., Σ(t) =
⋃m−1

ℓ=0 Σℓ(t),
and each Σℓ(t) evolves by Vℓ = fℓ −Hℓ.

Σℓ(t) can be described as

Σℓ(t) = {x ∈W ; u(t, x)− θ(x) ≡ 2πℓ mod 2πmZ}.θ(x) = N∑
j=1

mj arg(x− aj), mj = m or −m.


Let us denote the level set equation for Σℓ by

ut + Fℓ(∇(u− θ),∇2(u− θ)) = 0 in (0, T )×W.

(Fℓ(p,X) = −γℓ(p) {div(ξℓ(p)) + fℓ} , where ξℓ = ∇γℓ.)

In other words, u satisfies

ut + Fℓ(∇(u− θ),∇2(u− θ)) = 0 in a neighborhood of Σℓ(t) = {u− θ ≡ 2πℓ}.
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Interlace motion equation

ut + Fℓ(∇(u− θ),∇2(u− θ)) = 0 in a neighborhood of Σℓ(t) = {u− θ ≡ 2πℓ}.
Fℓ(p,X) = −γℓ(p) {div(ξℓ(p)) + fℓ}

Now, let λ ∈ R/(2πmZ) → [0, 1] be a cut-off function such that

λ(σ) =

{
1 if |σ| < π − δ,
0 if |σ| > π + δ,

m−1∑
ℓ=0

λ(σ − 2πℓ) = 1.

By using λ, we combine all the level set equations as follows:

ut + λ(u− θ)F0(∇(u− θ),∇2(u− θ))

+ λ(u− θ − 2π)F1(∇(u− θ),∇2(u− θ))

+ λ(u− θ − 4π)F2(∇(u− θ),∇2(u− θ))

+ · · ·+ λ(u− θ − 2(m− 1)π)Fm−1(∇(u− θ),∇2(u− θ)) = 0 in (0, T )×W.

(cf. Y. Giga and Y.-H. R. Tsai, Hokkaido University Preprint Series in Mathematics #591, 2003.)
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Algorithm for interlace motion

ut +

m−1∑
ℓ=0

λ(u− θ − 2πℓ)Fℓ(∇(u− θ),∇2(u− θ)) = 0 in (0, T )×W.

1 Initialize: u0 ∈ C(W ) satisfying Σ(0) = {u0 − θ ≡ 0} is given.

2 For given un ∈ C(W ), find minimizers w∗
ℓ of

w∗
ℓ = argmin

w

{∫
W

γℓ(∇(w − θ))dx−
∫
W

fℓwdx+
1

2h

∥∥∥∥∥ w − un√
γℓ(∇(un − θ))

∥∥∥∥∥
}

for ℓ = 0, 1, 2, . . . ,m− 1.

3 Set

un+1 = un +

m−1∑
ℓ=0

λ(un − θ − 2πℓ)(w∗
ℓ − un).(

Recall: w∗
ℓ − un = hγℓ(∇(un − θ)) {div(ξℓ(∇(w∗

ℓ − θ)) + fℓ}.
)
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Illusory spirals and loops

The lattice of L-cystine has
• hexagonal anisotropy with 5-usual and 1-low surface energy facets,
• Unit cell of the lattice has 6 layers successively rotated clockwise by π/3.

This situation can be expressed by γ whose Frank diagram: Fγ = {p; γ(p) ≤ 1} is the convex hull of

N0 = (1/a, 0) (0 < a < 1), and Nj =

(
cos

πj

3
, sin

πj

3

)
(j = 1, . . . , 5).

(Left Figure: Shtukenberg et al., Illusory loops and spirals, PNAS 110, 17195–17198 (2013).)
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Numerical simulation of Illusory loops and spirals

t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 1

t = 0 t = 0.1 t = 0.2

t = 0.4 t = 0.6 t = 1

Illusory loops (1 center) Illusory spirals (2 centers)
Spiral steps form isles. Isle steps form a spiral.

(In above cases we choose a = 0.5. Note that a > 0 for L-cystine crystal is a ≈ 0.1.)
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Summary

• We proposed an numerical algorithm for evolving spirals by crystalline curvature flow.

• A simple algorithm of minimizing movement approach was established by using general level set
function

• Numerical accuracy was obtained by comparing our approach and front-tracking method due to
Ishiwata-O(2019).

• As an application of our approach, the case when bunching occurs can be treated (just formal
computation).

Remark

• We can choose different anisotropies for eikonal and curvature part.

• The equation with mobility; βVγ = −Hγ + f can be established by setting

un+1 = un +
w∗ − un

β(∇(un − θ))
(w∗ : minimizer of E(w : un)).

Thank you for your attention.
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