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Motivation
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Motivation simplified
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Two approaches

; ; ~ 1P [—
Sharp interface ¢ € BV(D; {—1,1}) Diffuse interface pe = ¢, pe € HY(D;[—1,1])

I Pe

Positives: ——

Positives: 0(6)

o Corners can be quite natural. .
4 @ Only have to change the density.

o Solving the PDE.

Negatives:

o Standard methods for refinement.

o Significant amount of developed literature.
@ Have to move the mesh. .
. ) Negatives:
o Mesh can degenerate; requires remeshing. . L
. @ Solving an approximation.
@ Topology changes are challenging. .
o Parameter tuning.
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Two approaches to the same problem

Sharp interface
Let Q := { > 0}, E:= {p < 0}, and I := 99

min J
yeudineo (v, )

subject to
—BAYyel + Yvel * V)Yvel + Vpress = 0 in Q
div y, = 0in Q
Yvel = & 0n OQ M OD
Yvel = 00n 8Q\ 8D
where, e.g.,
@9 = {o € BV(D; {~1,1}) : [p ¢ dx = B|D|} and
U:: ={y e H X L2: y, =0on w =—1,yellop =
g
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Diffuse interface

Let Q¢ = {pe = 1}, Ec := {p = —1}, and T¢ =
{lpel <1}

. Y 2
yeu,glerlbad’e Iy pe) + o /D (eIV‘Pél * W(‘PE)) dx

+ [ Godealyal®x
subject to
—BAY el + Vvl * V)Yvel + ®e(Pe)Yvel + Vpress = 0in Q
div y e =0in Q
Yvel = g on 8D
where, e.g.,

ad = {¢ € HY(D;[~L,1)) : [, dx = BID]} and

U ={y € H* X L? : yiellop = g}
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A possible energy function

One typical example for J is to choose

l+ep
}’a ‘P / |D}/veI|2dX'

This is expected to have a minimiser of the form

rWaH
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Computational shape optimisation with phase fields

A combined shape and topology optimisation using phase fields and the wl,oe topology

Domain D is discretised by a triangulation T}, with U being discretised by Taylor-Hood elements

subordinate to 7}, Piecewise linear functions are used to discretise ®,q..
The minimisation process uses VMPT!:

k+1 k Ak+1
e = (1=t + tkpy

where t, € (0, 1] is a step-size and

(1 .
@+t = arg min {2II¢ —@dllf+ 7 ()b — ] b € q’ad,e} ’

where je is the reduced cost functional and H = H(D).

1L. Blank and C. Rupprecht. “An extension of the projected gradient method to a Banach space setting with application in structural topology

optimization”. In: SIAM Journal on Control and Optimization 55.3 (2017), pp. 1481-1499.
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Computational shape optimisation with sharp interface

This is more challenging. Recent typical methods involve Hilbert spaces, e.g., H1(€2; RY).
Writing j(Q2) = J(y, ¢) for the reduced (shape) functional, the shape derivative

AW — i AL (R = ()

t—0t t

is only generally defined for V € W1°°(Q).
There are a few works?3# which use the approach of minimsing using the W1 topology;
furthermore, they do not (yet) handle geometric constraints unless using a penalty.

2K. Deckelnick, P. J. Herbert, and M. Hinze. “A novel W*® approach to shape optimisation with Lipschitz domains’. In: ESAIM: COCV 28
(2022).

3K. Deckelnick, P. J. Herbert, and M. Hinze. Convergence of a steepest descent algorithm in shape optimisation using W1:°° functions. (under
revision).

4K. Deckelnick, P. J. Herbert, and M. Hinze. PDE constrained shape optimisation with first-order and Newton-type methods in the W1»°
topology. (under revision).
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Computational shape optimisation with sharp interface (geometric penalty)

We saw some of this on Monday, so this is only a quick refresher

The domain D is discretised by a triangulation 7}2. The initial guess Q should be a collection of
these triangles Our mesh will be parameterised according to a piecewise linear function ®7. The
domain § is triangulated by Tg 09 2 sub triangulation of Tgo. Here, Qop, denotes CD"(Q)
On 7?2“’2' we use Taylor-Hood elements to discretise U¥.
The entire computational mesh is updated according to
Ol = (id + t V}) o O]

where t;, € (0,1) and

Vi € arg min{j5(Qep)[Vi] : Vi € Vor, |[DVi| < 1},
where js = j + %(penalty term), and v“’ﬁ are piecewise linear functions on D subordinate to

Ton.

h
For a Poisson state problem, we have global convergence of this method. With assumptions, it is
known that j (Qer) — 0.
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Computational shape optimisation with sharp interface (geometric constraint)

Not so much is different if one wishes to incorporate the geometric constraint G(2) = 0, only
the update step, whereby one takes

V/? € arg min{j’(Qq;z)[Vh] V€ vd;z, |DVh| <1, G((ld + ch)(Qq:.Z)) = 0}.

We can still run the code for this, albeit without a convergence argument®.

An advantage of this is that one does not have to deal with a penalty parameter, its tuning, and
the slowness introduced. A disadvantage is the dependence of V' on t, as well as a more
difficult problem to solve.

5we are working on this
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Our proposed strategy

O Use a phase field method to find a diffuse interface (almost minimiser).
@ Make cuts in the triangulation along the zero level set.

© Do the sharp method.

© (No reason one couldn’t go back to the diffuse approach and iterate)
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Experiment

Experiments conducted using DUNE.

We consider three problems:

o A simple Poisson problem for a kidney shape - a common example in the shape optimisation
literature;

o The Stokes problem with constrained barycenter and volume, with the energy being the
viscous dissipation;

o The Stationary Navier—Stokes problem with constrained barycenter and volume, with the
energy being the viscous dissipation.
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Simple (Poisson) problem
Kidney shape

We consider j(Q) = [,y dx, where y € H}(Q;

A combined shape and topology optimisation using phase fields and the wl,oe topology

F =10(2.5(x1 + 0.5 — x3)? + x2 + x2 — 1).

\YAVAVAY,

VAYAAVAYAVAVANAVAS

Initial phase
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Phase before 1st refinement
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R) satisfies —Ay =

Phase after 1st refinement
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Simple (Poisson) problem
Kidney shape

We consider j(Q) = [ y dx, where y € H}(Q; R) satisfies —Ay = F,
F =10(2.5(x1 + 0.5 — x3)% + x2 + x5 — 1).

Phase after 1st refinement Phase before 2nd refinement Phase after 2nd refinement
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Simple (Poisson) problem

Kidney shape

We consider j(Q) = [, y dx, where y € H}(Q; R) satisfies —Ay = F,
F =10(2.5(x1 + 0.5 — x3)? + x2 + x2 — 1).

Phase after 2nd refinement Phase before sharp method Initial sharp phase
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Simple (Poisson) problem

Kidney shape

We consider j(Q) = [, y dx, where y € H}(Q; R) satisfies —Ay = F,
F =10(2.5(x1 + 0.5 — x3)? + x2 + x2 — 1).

Initial sharp phase Final sharp phase
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Stokes problem

We consider j(Q) = & Jo | Dyyer|? dx, where y = (Yyel, Ypress) solves the Stokes equations.

Initial phase Phase before sharp method
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Stokes problem

We consider j(Q2) = % fQ |Dy\er|? dx, where y = (Wvels Ypress) solves the Stokes equations.

Phase before sharp method Initial sharp phase
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Stokes problem

We consider j(Q) = & [, | Dyyer|? dx, where y = (Vyel, Ypress) solves the Stokes equations.

Initial sharp phase Final sharp phase
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Navier—Stokes problem

We consider j(Q2) = % fQ |Dy\er|? dx, where y = (Wvels Ypress) solves the
stationary-Navier—Stokes equations.

Initial phase Phase before sharp method
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Navier—Stokes problem

We consider j(Q2) = % fQ |Dy\er|? dx, where y = (Wvels Ypress) solves the
stationary-Navier—Stokes equations.

Phase before sharp method Initial sharp phase
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Navier—Stokes problem

We consider j(Q2) = % fQ |Dy\er|? dx, where y = (Wvels Ypress) solves the
stationary-Navier—Stokes equations.

Initial sharp phase Final sharp phase
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Summary

We propose a shape optimisation framework together with a steepest descent method for shape optimisation in the W1
topology.

We have shown:

@ Seen the transerfence of a phase field problem to a sharp interface problem for shape optimisation for a non-trivial
example.

o Seen that the phase field gives a good guess, and that the sharp method makes corners where they should be present.

Future work:
o Demonstrate convergence with geometric constraints in the sharp problem.
o Higher order (second derivative) information.

o Utilise this combined approach for problems with many topology changes, e.g., elasticity.
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