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1 Introduction

Here are two photos of single crystals and a picture drawn by PC.

番組表 ニュース 天気 アナウンサー イベント

２００７年０７月０８日放送
「塩の不思議」
今回のテーマは「塩」
生活に欠かせない身近な「塩」の
不思議をでんじろう先生がわかり
やすく解説しちゃいます！
→ 過去の実験一覧はコチラ！！

■キラキラ輝く魔法の水
＜実験方法＞
透明な耐熱容器に一見普通のお湯を注ぎ込み、光を当ててみると・・・

＜結果＞
お湯の中がキラキラと輝いた！

【解説】
お湯の中へ塩を入れて混ぜ、溶け残るぐらいの飽和食塩水を作り、そのうわずみ
を耐熱容器に移して観察する。
キラキラ輝いているのは、塩の結晶が光に反射しているため。

■ラブラボ！実験隊　海で古代の塩作りに挑戦！
＜実験内容＞

沿岸に生えている「※ホンダワラ」という海藻を刈り取る。1. 

刈り取った海藻を天日干しにして乾燥させる。2. 

乾燥した海藻を灰になるまで燃やす。 乾燥させた海藻の表面に塩が付いている3. 

ラブラボ！中京テレビ http://www.ctv.co.jp/hapiene/lovelabo/2007/0708/
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Figure 1: Left: crystal of salt in water. Center: microcrystal on a quartz
substrate. Right: equilibrium surface for an anisotropic surface energy
(§5)

Most of single crystals are convex. However, the crystal in Fig.1,

center is not convex. It is grown from an S-planarchiral aromatic

molecule [2.2] paracyclophane appended with four (methoxyphenyl)

ethynyl arms (Oki et al., 2022, Science). They say morphology, size,

and orientation of such non-convex crystals are difficult to control

because they grow quickly. In this talk we study equilibrium shapes of

anisotropic surface energy which may be applicable to single crystals.
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The subject of this talk is generalized to hypersurfaces in Rn+1.

Also the methods we will discuss are essentially very general. How-

ever, in order to save time, I will mainly discuss surfaces in R3, explain

the methods for specific examples, and some results will be given un-

der stronger assumptions than their original theorems.
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2 Anisotropic surface energy (energy of crystals)

Let γ :S2={ν ∈ R3; |ν|=1} → R>0 be a C0 function, (energy density),

M=∪k
i=1Mi, a closed oriented piecewise-C2 surface in R3,

∂Mi ∩ ∂Mj =Mi ∩Mj, if i ̸= j. Mi is smooth with unit normal ν.

The anisotropic (surface) energy Fγ(M) of M is defined as follows:

Fγ(M) :=
k∑

i=1

∫
Mi

γ(ν(p)) dA.

If γ ≡ 1, Fγ(M) is the usual area of M．
p

ν(p)

q

ν(q)M

1

M

M

3

2

Figure 2: A piecewise-C2 surface with unit normal ν
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For any V > 0, among all closed surfaces enclosing the volume V ,

there exists a unique (up to translation) minimizer Wγ(V ) of Fγ =∫
γ(ν)dA (J. E. Taylor,’78). For a certain specific V0 > 0, Wγ(V0) is

called the Wulff shape for γ, which will be denoted by Wγ. All Wγ(V )

are homothetic to Wγ.

Example 2.1. (i) If γ ≡ 1, the Wulff shape Wγ is the unit sphere S2.

(ii) If γ(ν) = γ(ν1, ν2, ν3) = |ν1| + |ν2| + |ν3|, (ν ∈ S2), Wγ is the cube

{x = (x1, x2, x3) ∈ R3 | max{|x1|, |x2|, |x3|} = 1}.

(iii) If r > 0, h > 0, and γ(ν) = r
√
ν21 + ν22 + h|ν3|, Wγ is the cylinder

with radius r and height 2h.

Figure 3: Wulff shapes for γ’s in Example 2.1: sphere, cube, cylinder.
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3 Cahn-Hoffman map and anisotropic mean curvature

The homogeneous extension of γ : S2 → R>0 is defined as follows.

γ : R3 → R≥0, γ(rX) := rγ(X), ∀X ∈ S2, ∀r ≥ 0.

We say that γ is convex if and only if γ is a convex function.

Assume γ is of C1. The map ξγ : S2 → R3 defined by ξγ(ν) := Dγ|ν, (D
is the gradient in R3) is called the Cahn-Hoffman map for γ.

In general, Wγ ⊂ ξγ(S
2) =: W̃γ.

γ is a convex integrand. ⇐⇒ Wγ = ξγ(S
2).

Sn

Q
O

ων
ν

O
ξ 

ξ( Sn)~
W:=

Tω
~
W

ω＝ξ(ν)

|OQ|=γ(ν)

Figure 4: The Cahn-Hoffman map ξγ : S2 → R3
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Definition 3.1 (anisotropic mean curvature). Λ := (1/2)(−divMDγ +

2Hγ) is called the anisotropic mean curvature of M , where H is the

mean curvature of M .

If γ is convex, “Λ ≡ constant” is a 2nd order quasi-linear elliptic PDE.

By using the first variation formulas of the the anisotropic energy

and the volume (see the next slide), we see:

Proposition 3.1. [Euler-Lagrange eqns] Assume γ ∈ C2(S2). A piecewise-

C2 surface M =∪Mi ⊂ R3 is a critical point of the anisotropic energy

Fγ(M) =

∫
M

γ(ν) dA for volume-preserving variations if and only if

(i) Λ ≡ constant on M , and

(ii) (G|Mi
−G|Mj

)(ζ) ∈ Tζ(∂Mi ∩ ∂Mj) at ∀ζ ∈ ∂Mi ∩ ∂Mj. (G = ξγ ◦ ν.)

If M satisfies the above (i) and (ii), we call M a CAMC surface.

The image of the Cahn-Hoffman map has Λ = −1 at regular points.
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First variation formulas:

Lemma 3.1. Assume thatM ⊂ R3 is a smooth surface with unit normal

ν. Let Mϵ =M + ϵ(δM) +O(ϵ2) be a smooth variation of M . Then the

first variation of the anisotropic energy Fγ is given as follows.

δFγ :=
dFγ(Mϵ)

dϵ

∣∣∣
ϵ=0

= −
∫
M

2Λ⟨δM, ν⟩ dA−
∮
∂M

⟨δM,R(p(ξγ ◦ ν))⟩ ds̃,

where dA is the area element of M , N is the outward-pointing unit

conormal along ∂M , ds̃ is the line element of ∂M , R is the π/2-rotation

on the (N, ν)-plane, and p is the projection from R3 to the (N, ν)-plane.

Moreover it is known that the first variation formula of the volume

enclosed by M is given as follows.

δV =

∫
M

ψ dA, ψ := ⟨δM, ν⟩. (1)
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4 Uniqueness of closed CAMC hypersurfaces

Is a closed CAMC hypersurface in Rn+1 only the Wulff shape?
regularity n=2, genus 0 ∀n, stable ∀n, embedded

γ ≡ 1 smooth ○ ○Barbosa- ○Alexandrov
(W = Sn) Hopf ’51 do Carmo’84 ’62
γ,Wγ ∈ C∞, smooth ○’10 K-Palmer ○ 1998 ○He-Li-Ma-
D2γ + γ1 > 0 2012 Ando Palmer Ge, 2009

γ ∈ C2 piecewise (2012 Palmer)
γ:convex C2, ? ○ 2018 Koiso ?

non-flat
γ ∈ C0 Lip can have ? ? ?
γ:convex flat faces n = 1 ○’05 Morgan

(e.g. crystal) (cf.discrete
surface)

γ ∈ C∞ piecewise × ×
non-convex smooth, Jikumaru-K ? Jikumaru-K

non-flat 2018 2018
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5 A (free) boundary problem

Let M be CAMC. For volume-preserving variation with variation

vector field δM = η + ψν, the second variation of the energy is given

by

δ2Fγ = −
∫
M

ψL[ψ] dΣ +

∮
∂M

ψ⟨A∇ψ, n⟩ ds̃, (2)

where L is the self-adjoint Jacobi operator

L[ψ] := div(A∇ψ) + ⟨Adν, dν⟩ψ,

A := D2γ + γ1, and n is the outward-pointing unit conormal along

∂M . Note that L[νi] = 0 (ν = (ν1, ν2, ν3)). In order to check the stabil-

ity of CAMC surfaces, it is useful to study the following eigenvalue

problem.

L[ψ] = −λψ on M, ∇ψ|∂M = 0. (3)
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Now, fix a positive energy density function γ : S2 → R>0 and a plane

Π. Consider the following free boundary problem:

(FB) Study equilibrium surfaces of the anisotropic energy Fγ for sur-

faces with free boundary on the plane Π enclosing a given volume.

M is a solution of (FB) iff M is CAMC and orthogonal to Π.

Definition 5.1. A solution M=∪k
i=1Mi of (FB) is said to be stable if the

second variation of Fγ for any volume-preserving variation satisfying

the boundary condition is non-negative.

It is easy to show:

Proposition 5.1. Let M be a solution of (FB). Assume that M is

a graph of a function defined on a domain in Π. If the equation

“Λ =constant” is elliptic, then M is stable.
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Now, we give an example. Set r(t) :=
[
cos8

( 3t

2

)
+ sin8

( 3t

2

)]− 1
20
.

Consider a surface S : (x, y, z) (−π/2 ≤ θ ≤ π/2, 0 ≤ t < 2π) defined by

x =
[
6 cos4 θ − 5(cos6 θ + sin6 θ)

]
(cos θ)r(t) cos t, (4)

y =
[
6 cos4 θ − 5(cos6 θ + sin6 θ)

]
(cos θ)r(t) sin t, (5)

z =
[
6 sin4 θ − 5(cos6 θ + sin6 θ)

]
sin θ. (6)

Define γ :S2→R so that the image of the Cahn-Hoffman map ξγ is S.

Figure 5: S, Wγ, a closed CAMC surface and its upper half.

The right end surface M = M1 ∪M2 in Fig.5 is stable for variations

which do not break the smoothness of each Mi for fixed boundary.

How about the stability when the smoothness is changed is open.

12



References

[1] Y. Jikumaru and M. Koiso. Non-uniqueness of closed embedded

non-smooth hypersurfaces with constant anisotropic mean curva-

ture, preprint. arXiv:1903.03958 [math.DG]

[2] M. Koiso, Uniqueness of stable closed non-smooth hyper-

surfaces with constant anisotropic mean curvature, preprint.

arXiv:1903.03951 [math.DG]

[3] M. Koiso, Uniqueness of closed equilibrium hypersurfaces for

anisotropic surface energy and application to a capillary problem,

Mathematical and Computational Applications, (2019), 24(4), 88;

https://doi.org/10.3390/mca24040088

13


