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1 Introduction

Here are two photos of single crystals and a picture drawn by PC.

Figure 1: Left: crystal of salt in water. Center: microcrystal on a quartz
substrate. Right: equilibrium surface for an anisotropic surface energy

(85)

Most of single crystals are convex. However, the crystal in Fig.1,
center is not convex. It is grown from an S-planarchiral aromatic
molecule [2.2] paracyclophane appended with four (methoxyphenyl)
ethynyl arms (Oki et al., 2022, Science). They say morphology, size,
and orientation of such non-convex crystals are difficult to control
because they grow quickly. In this talk we study equilibrium shapes of

anisotropic surface energy which may be applicable to single crystals.



The subject of this talk is generalized to hypersurfaces in R""!.
Also the methods we will discuss are essentially very general. How-
ever, in order to save time, I will mainly discuss surfaces in R?, explain
the methods for specific examples, and some results will be given un-

der stronger assumptions than their original theorems.
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2 Anisotropic surface energy (energy of crystals)

Let v:5?={v € R% |v|=1} — R+ be a C" function, (energy density),
M =UF_ | M;, a closed oriented piecewise-C? surface in R?,
OM; N OM; = M; " M,, if © # j. M, is smooth with unit normal v.

The anisotropic (surface) energy F,(M) of M is defined as follows:

Z/ dA.

If y=1, F,(M) is the usual area of M.

Figure 2: A piecewise-C? surface with unit normal v



For any V > 0, among all closed surfaces enclosing the volume V,
there exists a unique (up to translation) minimizer W,(V) of F, =
[~v(v)dA (J. E. Taylor,’78). For a certain specific 1, > 0, W, (1)) is
called the Wulff shape for v, which will be denoted by W,. All W. (V)
are homothetic to ..

Example 2.1. (i) If ¥ = 1, the Wulff shape W, is the unit sphere S°.
(ii) If v(v) = y(1,0,v3) = || + o] + 5], (v € S?), W, is the cube
{r = (x1, 19, 23) € R | max{|xy|, |z2], |23} = 1}.

(iii) If » > 0, h > 0, and ~(v) = r\/vi + v + h|vs|, W, is the cylinder
with radius r and height 2/.

Figure 3: Wulff shapes for 7’s in Example 2.1: sphere, cube, cylinder.



3 Cahn-Hoffman map and anisotropic mean curvature

The homogeneous extension of v : S? — R, is defined as follows.

7 : R% — R, F(rX) :=ry(X), VX € 5% Vr > 0.
We say that v is convex if and only if 7 is a convex function.
Assume 7 is of C'. The map &, : S* — R? defined by &, (v) := D7|,, (D
is the gradient in R*) is called the Cahn-Hoffman map for ~.

In general, W, C &,(5%) =: W.,.
v is a convex integrand. < W, = £ (S5?).

Figure 4: The Cahn-Hoffman map ¢, : S* — R’



Definition 3.1 (anisotropic mean curvature). A := (1/2)(—divy Dy +
2H~) is called the anisotropic mean curvature of M, where H is the

mean curvature of M.

If v is convex, “A = constant” is a 2nd order quasi-linear elliptic PDE.
By using the first variation formulas of the the anisotropic energy

and the volume (see the next slide), we see:

Proposition 3.1. [Euler-Lagrange eqns| Assume v € C?%(S?%). A piecewise-
C? surface M =UM; C R’ is a critical point of the anisotropic energy

Fy (M) = / v(v) dA for volume-preserving variations if and only if
M

(i) A = constant on M, and

(ii) (G

M; — G’MJ)(C) c TC((?MZ M 8M]) at \V/C c OM; N aM] (G = f'y o V.)

If M satisfies the above (i) and (ii), we call M a CAMC surface.
The image of the Cahn-Hoffman map has A = —1 at regular points.
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First variation formulas:

Lemma 3.1. Assume that M C R? is a smooth surface with unit normal
v. Let M, = M + €(6M) + O(¢*) be a smooth variation of M. Then the

first variation of the anisotropic energy £, is given as follows.

dF., (M)
de

o0F, =

T /MQA<5M, v) dA —7{ (OM, R(p(&, ov))) ds,

oM

where dA is the area element of M, N is the outward-pointing unit
conormal along 0M, ds is the line element of OM, R is the 7/2-rotation

on the (N, v)-plane, and p is the projection from R’ to the (V, v)-plane.

Moreover it 1s known that the first variation formula of the volume

enclosed by M is given as follows.

5V:/M¢dA, Y= (0M,v). (1)
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4 Uniqueness of closed CAMC hypersurfaces

Is a closed CAMC hypersurface in R""! only the Wulff shape?

regularity n=2, genus 0 Vn, stable Vn, embedded
v=1 smooth O O Barbosa- O Alexandrov
(W =.5m) Hopf ’51 do Carmo’84 62
v, W., € C, smooth | O’10 K-Palmer (01998 O He-Li-Ma-
D?y+~1>0 2012 Ando Palmer Ge, 2009
v € C? piecewise (2012 Palmer)
v:convex C?, ? O 2018 Koiso 7
non-flat
v € CY Lip can have ¢ ¢ ¢
v:convex flat faces n =1 (O’05 Morgan
(e.g. crystal) | (cf.discrete
surface)
v e C™ piecewise X X
non-convex smooth, Jikumaru-K ? Jikumaru-K
non-flat 2018 2018




5 A (free) boundary problem

Let M be CAMC. For volume-preserving variation with variation
vector field 0M = n + Yv, the second variation of the energy is given
by

27, = [ wrlass § piavenas 2)
M

oM

where L is the self-adjoint Jacobi operator
L] == div(AVY) + (Adv, dv),

A = D?*y + ~1, and n is the outward-pointing unit conormal along
OM. Note that L|v;) =0 (v = (v1,15,v3)). In order to check the stabil-
ity of CAMC surfaces, it is useful to study the following eigenvalue

problem.

L] = =\ on M,  Vb|onr = 0. (3)

10



Now, fix a positive energy density function v : S? —+ R., and a plane

II. Consider the following free boundary problem:

(FB) Study equilibrium surfaces of the anisotropic energy F., for sur-

faces with free boundary on the plane II enclosing a given volume.

M is a solution of (FB) iff M is CAMC and orthogonal to II.

Definition 5.1. A solution M =U"_, M; of (FB) is said to be stable if the
second variation of F, for any volume-preserving variation satisfying

the boundary condition is non-negative.

It is easy to show:

Proposition 5.1. Let M be a solution of (FB). Assume that M is
a graph of a function defined on a domain in II. If the equation

“A =constant” is elliptic, then M is stable.
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3t ~20
Now, we give an example. Set r(t) := [ (—) + sin ( )} "

2
Consider a surface S : (z,y,2) (—7/2 < /2, 0 <t < 277) defined by
z = [6cos® 0 — 5(cos® 0 + sin® )] (cos O)r(¢) cost, (4)
y =6 cos* 6 — 5(cos® # + sin® 0)] (cos O)r(t)sint, (5)
2 = [6sin* @ — 5(cos® 0 + sin® 0)] sin 0. (6)

Define v:5% — R so that the image of the Cahn-Hoffman map &, is 5.

Figure 5: S, W, a closed CAMC surface and its upper half.

The right end surface M = M; U M, in Fig.5 is stable for variations
which do not break the smoothness of each M, for fixed boundary.

How about the stability when the smoothness is changed is open.
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