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Motivation forW 1,∞−topology
min
Ω∈S
J (Ω) = ∫

Ω

1

2
∥y − z∥

2
dx s.t.

−∆y = f in Ω, y = 0 on ∂Ω.

How does a shape derivative in PDE
constrained shape optimization look like?

J
′
(Ω)(V ) =

∫

Ω

(DV +DV
t
− divV I)∇y∇pdx+

+ ∫

Ω

1

2
(y − z)

2
divV − (y − z)∇zV dx−

− ∫

Ω

fV∇pdx

Here, p ∈H1
0 denotes the adjoint variable

satisfying −∆p = (y − z) in Ω.

H1 (top) versusW 1,p (bottom)a

W 1,∞ (left) versusH1 (right)b

aNumerics by Peter Marvin Müller
bNumerics by Philip Herbert
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Outline

∎ Descent inW 1,∞

∎ Hold-all concept

∎ Finite element approximation

∎ Convergence

∎ Summary
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Descent inW 1,∞

Deformation of a domain by vector fields θ2

Grid quality should be conserved

2Courtesy G. Allaire, C. Dapogny, and F. Jouve. Chapter 1 - Shape and topology optimization. In: Geometric
Partial Differential Equations - Part II. Vol. 22. Handbook of Numerical Analysis. Elsevier, 2021, pp. 1-132.
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Descent inW 1,∞

Let J ∶A→ R denote a shape functional, where we assume that J is shape differentiable
in an appropriate sense with differentialDJ . Let Ω ⊂ Rd be a bounded and open domain
and an element ofA.

We aim at determining descent vectorfields V ∗ ∶ Rd
→ Rd such that

∎ DJ(Ω)[V ∗] < 0, and

∎ Ω̃ = Tt(Ω) ∶= (Id + tV
∗
)(Ω) is an open domain.

Idea: use steepest descent direction V ∗ for J in theW 1,∞ topology3:

(D∞) V
∗
= argmin
{V ∈W1,∞(Rd,Rd),∥V ∥1,∞≤1}

DJ(Ω)[V ].

Known practical approaches use Hilbert Space methods with V ∗ from

a(V
∗
,W ) =DJ(Ω)[W ] for allW ∈H,

where (H,a(⋅, ⋅)) denotes an appropriate inner product space4.

3A. Paganini, F. Wechsung, P.E. Farrell. Higher-order moving mesh methods for PDE-constrained shape
optimization SISC 40, 2018

4G. Allaire, C. Depogny, F. Jouve (2021). Shape and topology optimization. Handbook of Numerical Analysis
XXII, Geometric Partial Differential Equations, Part II, p. 1–132
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Approaches to solve (D∞)

A problem of the type of (D) is studied by Ishii and Loreti5, and also by Capatinelli and
Vivaldi6.

Proposed approaches
∎ p−Laplace relaxation: consider

(Dp) min Ip(v) ∶=
1

p
∫ ∣DV ∣

p
+DJ(Ω)[V ] over V ∈W 1,p

(Rd
,Rd
)

and consider unique solutions Vp of (Dp) as relaxed solutions of (D∞).

∎ Solution formula for the exact solution of (D∞) in the case d = 1 7.

∎ Use ADMM for the numerical solution of (D∞)8.

5H. Ishii and P. Loreti (2005). Limits of solutions of p-Laplace equations as p goes to infinity and related
variational problems. Siam J. Math. Anal. 37:411-437.

6R. Capitanelli and M.A. Vivaldi (2018). Limit of p-laplacian obstacle problems. arXiv:1811.03863
7K. Deckelnick, P.J. Herbert & M. Hinze. A novelW1,∞

−approach to shape optimisation with Lipschitz
domains. ESAIM: COCV 28 (2) (2022).

8e.g. Bartels, S., & Milicevic, M. (2017). Alternating direction method of multipliers with variable step sizes.
arXiv preprint arXiv:1704.06069.
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Solution framework with hold-all domain10.
Let us consider the shape optimisation problem

min
Ω∈S
J (Ω) = ∫

Ω
j(x,u,∇u)dx s.t. ∫

Ω
∇u ⋅ ∇η dx = ⟨f, η⟩ for all η ∈H1

0 (Ω),

where S ∶= {Ω ⊂D ∣Ω = Φ(Ω̂) for some Φ ∈ U}, and

U ∶= {Φ ∶ D̄ → D̄ ∣Φ is a bilipschitz map,Φ = id on ∂D},

Here,D ⊂ Rd open, convex, polygonal hold-all domain, and Ω̂ ⋐D a fixed reference
domain.

∎ Steepest descent method with Armijo step size rule;

∎ Descent directions from

(Dp) argmin
{V ∈W1,p(Rd,Rd)}

1

p
∫ ∣DV ∣

p
+DJ(Ω)[V ];

and/or
(D∞) V

∗
= argmin
{V ∈W1,∞(Rd,Rd),∥V ∥1,∞≤1}

DJ(Ω)[V ]

∎ Solution of (D∞) with the alternating direction method of multipliers (ADMM)9;

∎ Discretization with finite elements;

9e.g. Bartels, S., & Milicevic, M. (2017). Alternating direction method of multipliers with variable step sizes.
arXiv preprint arXiv:1704.06069.
10K. Deckelnick, P.J. Herbert & M. Hinze. PDE constrained shape optimisation with first-order and Newton-type

methods in theW1,∞
− topology. arXiv:2301.08690 (2023).
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Finite element framework and convergence12.
For the numerical method choose an admissible triangulation T̂h of D̄ and define

Ûh ∶= {Φh ∈ C
0
(D̄,Rd

) ∣Φh∣T̂ ∈ P
1
(T̂ ,Rd

), T̂ ∈ T̂h,Φh is injective,Φh = id on ∂D},

and
Sh ∶= {Ωh ⊂D;Ωh = Φh(Ω̂) for some Φh ∈ Ûh},

where TΩh
= {Φh(T̂ ), T̂ ∈ T̂

ref
h }.

The discrete shape optimisation problem reads

min
Ωh∈Sh

Jh(Ωh) = ∫
Ωh

j(x,uh,∇uh)dx s.t. ∫
Ωh

∇uh ⋅ ∇ηh dx = ⟨f, ηh⟩ for all ηh ∈XΩh
,

where
XΩh

∶= {ηh ∈ C
0
(Ωh) ∣ηh∣T ∈ P1(T ), T ∈ TΩh

, ηh = 0 on ∂Ωh.}

Furthermore, let

VΦh
∶= {Vh ∈ C

0
(D̄,Rd

) ∣Vh∣T ∈ P1(T,Rd
), T = Φh(T̂ ), T̂ ∈ T̂h, Vh = 0 on ∂D}.

Updates then are constructed according to11

Vh = argmin{J
′
h(Ωh)[Wh] ∣Wh ∈ VΦh

, ∣DWh∣ ≤ 1 in D̄},

Φ
new
h ∶= (id + tVh) ○Φh, Ω

new
h ∶= (id + tVh)(Ωh).

11compare also S. Bartels, G. Wachsmuth. Numerical approximation of optimal convex shapes. SISC 42, 2020,
and S. Schmidt, V. Schulz. A linear view on shape optimization. SICON 61, 2023.
12K. Deckelnick, P.J. Herbert & M. Hinze. Convergence of a steepest descent algorithm in shape optimisation

usingW1,∞
− functions. arXiv:2310.15078 (2023).
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Convergence results for the steepest descent method

Theorem 3.313: global convergence of the steepest descent method can be shown for a
fixed discretisation parameter, and under mild assumptions also, that every
accumulation point of this sequence is a stationary point of the discrete shape functional,
i.e.

Let (Φk
h)k∈N0 ⊂ Ûh and (Ωk

h = Φk
h(Ω̂))k∈N0 ⊂ Sh be the sequences generated by the

steepest descent method. Then:

(i) ∥J ′h(Ω
k
h)∥→ 0 as k →∞.

(ii) If supk∈N0 ∣(DΦk
h)
−1
∣ ≤ C, then there exists a subsequence (Φkl

h
)l∈N, which converges in

W 1,∞
(D) to a mapping Φh ∈ Ûh and Ωh ∶= Φh(Ω̂) is a stationary point of Jh, i.e. satisfies

J
′
h(Ωh)[Vh] = 0 for all Vh ∈ Vh.

Idea of proof: With the Armijo condition at hand, along the lines of Section 2.2.1 of H.,
Ulbrich, Ulbrich, Pinnau (Optimization with PDE constraints).

13K. Deckelnick, P.J. Herbert & M. Hinze. Convergence of a steepest descent algorithm in shape optimisation
usingW1,∞

− functions. arXiv:2310.15078 (2023).
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Convergence results for the steepest descent method cont’d

Theorem 4.414: under suitable conditions a sequence of discrete stationary shapes
converges with respect to the Hausdorff complementary metric to a stationary point of
the limit problem, i.e.

Suppose that (Ωh)0<h≤h0
satisfies

(A1) ∀0 < h ≤ h0 ∀Vh ∈ VΦh
∶ J

′
h(Ωh)[Vh] = 0;

(A2) ∃M > 1 ∀0 < h ≤ h0 ∀x, y ∈D ∶ M−1
∣x − y∣ ≤ ∣Φh(x) −Φh(y)∣ ≤M ∣x − y∣. Then there

exists a sequence (hk)k∈N with limk→∞ hk = 0 and an open set Ω ⋐D such that
ρc
H(Ωhk

,Ω)→ 0 as k →∞. Furthermore, Ω is a stationary point for J on S. Here,

ρ
c
H(Ω1,Ω2) ∶=max

x∈D̄
∣d∁Ω1

(x) − d∁Ω2
(x)∣

denotes the Hausdorff complementarity distance, where d∁Ω(x) ∶= inf{∣x − y∣ ∶ y ∈ D̄ ∖Ω}
for all x ∈D.

Idea of proof: Continuitiy of the Dirichlet problem w.r.t. the Hausdorff complementarity
metric (Mosco convergence), A2 implies uniform convergence (of a subsequence) of the
Φh and of the respective domains w.r.t. the HCM. If now the domains are stationary it
follows from the structure of the shape derivative and the convergences of the domains,
states and co-states that the limit domain is stationary.

14K. Deckelnick, P.J. Herbert & M. Hinze. Convergence of a steepest descent algorithm in shape optimisation
usingW1,∞

− functions. arXiv:2310.15078 (2023).
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Numerical example
Let j(x,u, z) ∶= 1

2 (u − ud)
2, where ud(x) =

4
π − ∣x∣

2 and f = 1. Then −∆ud = 4f . We expect
the minimiser to be given by the ball of radius 2√

π
at the origin which has energy 6

π2 .
Initial domain with cost functional:

0 5 10 15 20

Iterations

10−4

10−3

10−2

E
ne

rg
y

-
6 π
2

p = 2

p = 4

p =∞ first order
p =∞ second order

Domains for p = 2,4,∞:
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Experimental order of convergence
Let j(x,u, z) ∶= 1

2 ∣z +
x
2 ∣

2, and f = 1. Then u(x) = 1
4 (r

2
− ∣x∣2) and Ω = Br(0) is optimal with

J (Ω) = 0. We require volume 4 for admissible shapes. The minimiser then is the ball of
radius 2√

π
at the origin which has energy 0.

h µh Energy EOC Energy HCD EOC HCD
0.5 0.5 0.105327 – 0.0308699 –
0.25 1√

2
0.0268579 1.97146 0.0273133 0.176597

0.125 1 0.00712922 1.91353 0.016456 0.730993
0.0625

√
2 0.00179752 1.98774 0.00912092 0.851362

0.03125 2 0.000493593 1.86461 0.00451768 1.0136
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Summary
We propose a finite element framework for PDE constrained shape optimization in the
W 1,∞ topology.
∎ We prove global convergence of steepest descent with Armijo step size rule in the

discrete setting.
∎ Under mild assumptions we prove convergence in the Hausdorff complementary

metric of discrete stationary shapes to a stationary point of the continuous problem.

Literature:
∎ K. Deckelnick, P. Herbert, M. Hinze: A novelW 1,∞

−approach to shape optimisation
with Lipschitz domains. ESAIM: COCV 28 (2) (2022).
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∎ K. Deckelnick, P.J. Herbert, and M. Hinze. Convergence of a steepest descent
algorithm in shape optimisation usingW 1,∞ functions. arXiv.2310.15078 (2023)

Related: Philip Herbert’s talk at 10:00 on Thursday: A combined diffuse interface and
sharp interface method for shape optimisaton.

Thank you for your attention.
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