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Inhomogeneous non-linear Fokker-Planck equations

{ft—div(fV(D(x)logf+¢(x)))=0, xX€EQ, t>0,
f(x,0) = fo(x), xeQ.
Q = [0,1)" with the periodic boundary condition for f.
D = D(x) : @ — R: given positive periodic smooth function.
¢ = ¢(x) : Q — R: given periodic smooth function.
Jo = fo(x) : @ — R: given periodic smooth probability density function.
f = f(x,t) : ©x[0,00): unknown probability density function (PDF).
We want to know...

A condition that a classical solution f of (FP) converges to the equilibrium
state foq(x) = exp (—"’g‘()x')c) ast — oo.

)

Main talk: Why do we consider (FP)?
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Motivation: Why (FP)?

Consider the following Stochastic differential equation

dx dB
E = —V¢(x) + @E’ (SDE)

where B is a Brownian motion/Wiener Process, D is a positive coefficient.

If D is a constant, the associated PDF f of (SDE) satisfies
fo = ADf) +div(fV$(x)) = div(fV (D log f + $(x))).
Then, we can deduce the following energy law (I explain later):
d
G [@sogs =14 sp@nar=- [ [VD10gs+ )P 1
Q @

NOTE =V (D log f + ¢(x)) is called velocity in the continuity equation.
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Motivation: Why (FP)?

Consider the following Stochastic differential equation

d. d
d_’; = —Vé(x)+ V2D (SDE)
where B is a Brownian motion/Wiener Process, D isa positive coefficient.

If D is a function of x, we should determine/point out the stochastic integration
(Ito, Stratonovich, etc)).

Ji = AD(x)f) +div(fVé(x))
fi = div(yD (x)V (YD (x) f)) +div(f Ve (x))
Ji = div(D (x)Vf) +div(fVé(x))

It is difficult to deduce the energy law:

—/ (What is the form?) d. /lvelomtyl fdx
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Motivation: Why (FP)?

Returning to the energy law with the constant D:
d
i [ @rtos =D+ o as = [(Drogs+pe s
= —/(D log f + ¢(x)) div(fu) dx
Q

= —fgflulzdx

where u = -V (D log f + ¢(x)). We can proceed the above computation even
though D is a function of x. Namely, to guarantee

%/Q(D(x)f(lng—1)+f¢(x))dx=—/Qf|u|2dx (EnergyLaw)

along with the continuity equation f; + div(fu) = 0, we may find
u=-V(D(x)log f + ¢(x)).
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Motivation: Why (FP)?

Why consider variable coefficients? To answer it, consider (SDE) again:

dx dB
o7 =~Ve@) + V2D — (SDE)

Here D is the coefficient of the Brownian motion.

D is related to other parameters/variables, like temperature, etc.
To understand multi-scale models, energy law is important.
From the SDE, it is difficult to construct the energy law.

Our approach to derive (FP) is based on the (EnergyLaw)

%/S;(D(x)f(logf—1)+f¢(x))dx = —/S;f|u|2 dx  (EnergyLaw)
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Motivation: Relationship between evolution of grain boundaries and (FP)
<O‘ri3'\vxaﬁ wae[eﬁ >
r

(%, h(st)ds

{Reduced wodel > (Relarstion - the curture efledt )
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Motivation: Relationship between evolution of grain boundaries and (FP)

In SIAM MA(2021), and CMS(2021), we considered the following model:
d(Aoz) da _
—a; = 37VadkE, 77 = ~1VaE (GBM)

where Ae = (AU) ) is a misorientation, a is a triple junction, and

3
E(Aa,a) = Z oAV a)la - x;|.
j=1
In M3AS(2022), to understand the interaction between the misorientations and
the triple junction of numerous grain boundaries, we added the white noise:
d(Aa) dB da _
= -3y VA E —
dt 37’ Aa +ﬂAa' dt, dt
For constants Baq, Ba, We derive a sufficient condition to guarantee the
existence of the equilibrium state, and study long-time asymptotic behavior for

PDF of (GBM-SDE).
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Analysis of (FP)

{f,-div (fV(D x)log f + ¢ (x))) =0, xeQ, t>0, )

f(x,0) = fo(x), x € Q.

Theorem (arXiv:2404.05157)
Assume n = 1,2,3. For a fixed constant y > 0, there exist positive constants
C1 > 0, C, > 0 such that if

D)2, /Q V(D () log fo + () fodx < Cs,
then there is C > 0 such that for all £ > 0

f IV(D(x)log f + $(x))f dx < Ce™.
Q

Meaning: V(D (x)log f + ¢(x)) = 0 = D(x)log f + ¢(x) — Const
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Known results: Entropy dissipation methods

{ﬁ—div (fV(D(x)log f + $(x))) = 0, XxeQ, >0,
f(x,0) = fo(x), x € Q.

The entropy dissipation method is well-known to explore asymptotic behavior
for the Fokker-Planck equation. For the constant D case,

(FP)

Carrillo-Toscani, Math. Methods Appl. 1998.
Markowich-Villani, Proceeding of IV Workshop on PDEs, 2000.
Arnold-Markowich-Toscani-Unterreiter, CPDE, 2001

Jiingel, SpringerBriefs in Math., 2016.

They studied L' convergence by using the Csiszar-Kullback-Pinsker inequality.

There are not so much results for the variable diffusion coefficient case. For
example, Arnold-Markowich-Toscani-Unterreiter studied

fr =div(D(x)(Vu +uVep(x))).
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Key idea of proof: Extension to the entropy dissipation method

{f,-div (fV(D x)log f + ¢ (x))) =0, xeQ, t>0, )

f(x,0) = fo(x), x € Q.
G [@@saoer-v+soedr=- [ VO 02s + 4P f dx.
dt Jo Q
Compute 2nd derivative of the energy (u = =V (D (x) log f + ¢(x)))
d2
dr

— 2 . 2 . .
_ZL(V o(x)u u)fdx+2‘/QD(x)|Vu| fdx+/g(lncludlng VD) dx

fg (Df (log f — 1) + f$(x)) dx

;2/(v2¢(x)u-u)fdx+2/D(x)|Vu|2fdx

M/D(x)l(mcludmg VD)| dx.

Why r £ 3?: (including VD (x)) has |u|>.
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