Uniqueness in inverse problem of determining shapes of sub-boundaries by nonstationary heat equations without initial conditions

Masahiro Yamamoto

The University of Tokyo, Zonguldak Bülent Ecevit University

"Mathematical Aspects for Interfaces and Free Boundaries"
The 81st Fujiwara Seminar, Hilton Niseko Village
3 June 2024

Joint with

Professor A. Doubova (Universidad de Sevilla)

Professor E. Fernández-Cara (Universidad de Sevilla)

Professor J. Apraiz (Universidad del País Vasco, Leioa)

§1. Introduction

D: simply connected domain, $D \subset\subset \Omega \subset \mathbb{R}^n$.

$$\begin{cases} \partial_t u = \Delta u & \text{or } \partial_t u = \text{div} (p(x)\nabla u) & \text{in } (\Omega \setminus \overline{D}) \times (0, T), \\ u = 0 & \text{or } \partial_{\mathcal{V}} u = 0 \text{ on } \partial D \times (0, T) \end{cases}$$

Inverse problem: $u, \partial_{\mathcal{V}} u$ on $\gamma \times (0, T) \Longrightarrow D$?

Here $\gamma \subset \partial \Omega$: accessible outer subboundary ∂D : inaccessible subboundary.

Main theoretical topic: uniqueness

Case with zero initial value: easy

Let $u \not\equiv 0$ in $(\Omega \setminus \overline{D}) \times (0, T)$. Then $(u, \partial_{\nu} u)|_{\gamma \times (0, T)} \Longrightarrow D$ is 1 to 1. Proof. Let $D_1 \Rightarrow u$ and $D_2 \Rightarrow v$.

Sama Cauchy data $\Longrightarrow u = v$ in $(\Omega \setminus D_1 \cup D_2) \times (0, T)$ by Unique Continuation v = 0 on $\partial D_2 \Longrightarrow u = 0$ on $(\partial D_2 \setminus D_1) \times (0, T) \Longrightarrow$

$$\begin{cases} \partial_t u = \Delta u & \exists E \times (0, T), \\ u(\cdot, 0) = 0 & \text{in } E, \\ u|_{\partial E \times (0, T)} = 0 \end{cases}$$

 $\implies u = 0 \text{ in } E \times (0, T)$

Unique continuation implies $u \equiv 0$ in $(\Omega \setminus \overline{D_1}) \times (0, T) \Longrightarrow$ contradiction

Unique continuation: Let $\partial_t u = -Au$ in $\widetilde{\Omega} \times (0,T)$. If $u|_{\omega \times (0,T)} = 0$ or $u = \partial_{\nu} u = 0$ on $\gamma \times (0,T)$ with some subdomain ω and subboundary γ , then u = 0 in $\widetilde{\Omega} \times (0,T)$.

Main formulation: Initial values are also unknown!

We are motivated e.g., by estimation of interior status of blast furnace.

Nobody does not remember initial temperature distribution

when blast-furnace started to be operated e.g., 20 years ago.

References.

- Bryan-Caudill, Jr., (1997): assuming the whole boundary condition.
- Apraiz J. Cheng Doubova Fernández-Cara Yamamoto: one-dimensional case by heat and wave equations (2022):

Our Approach

• (i) Asymptotic uniqueness. We have uniqueness by "big" boundary inputs within resolution tolerance levels:

"Larger inputs \implies resolution level can be finer".

Key: extension inequality of solution to $\partial_t u = \Delta u$

Two versions: (a) Harnack inequality

- (b) Quantitative unique continuation by Carleman estimate
- (ii) Uniqueness by Bang-bang input.

§2. Asymptotic uniqueness by Carleman estimate

Let $D_1, D_2 \subset\subset \Omega$,

$$\begin{cases} \partial_t u = \Delta u & \text{in } (\Omega \setminus \overline{D_1}) \times (0, T), \\ u|_{\partial D_1} = 0, \end{cases}$$

$$\begin{cases} \partial_t v = \Delta v & \text{in } (\Omega \setminus \overline{D_2}) \times (0, T), \\ v|_{\partial D_2} = 0. \end{cases}$$

Let $\gamma \subset \partial \Omega$. If u = v, $\partial_{\nu} u = \partial_{\nu} v$ on $\gamma \times (0, T)$, then $D_1 = D_2$?

Theorem 1 (asymptotic uniqueness)

Assume that $||u||_*$, $||v||_* \le M_0$: a priori boundedness by some $C^{\ell,m}(\overline{\Omega} \times [0,T])$ -norm. Then for $\forall \delta > 0$, there exist $\exists T > 0$ (large) and $\exists R(\delta, M_0) > 0$ such that

$$||u||_{L^2(\gamma\times(0,T))}>R(\delta,M_0)$$

implies

$$|(D_1 \setminus D_2) \cup (D_2 \setminus D_1)| < \delta.$$

Remark. We can expect

$$\lim_{\delta \downarrow 0} R(\delta, M_0) = \infty.$$

estimate fuantitative unique continuation Ul: input large for Mo ⇒ QZD

Key: Quantitative unique continuation

Let $\Omega \subset \mathbb{R}^n$: bounded domain.

$$\begin{cases} \partial_t u = \Delta u & \text{in } \Omega \times (0, T), \\ \|u\|_{H^1(\partial \Omega \times (0, T))} + \|u\|_{L^\infty(0, T; H^1(\Omega))} \le M: \text{ arbitrarily given constant} \end{cases}$$

 $\omega \subset\subset \Omega_0 \subset\subset \Omega$, $\varepsilon>0$: given. Then $\exists C>0$, $\exists \theta\in(0,1)$ such that

$$||u||_{H^1(\varepsilon,T-\varepsilon;L^2(\Omega_0))} \leq C||u||_{H^1(0,T;L^2(\omega))}^{\theta}.$$

Here C and θ depend on M, ω , Ω_0 and are invariant under translations and rotations of coordinates.

M. Yamamoto, Introduction to Inverse Problems for Evolution Equations: Stability and Uniqueness by Carleman Estimates, to appear

Additional ingredient

$$||u(\cdot,t)||_{H^m(E)} \le Ce^{-c_0t}$$

with constants C, c_0 depending on geometry of D.

 \implies We can control amplitude of $u|_E$ also by choosing large T > 0.

 \Longrightarrow

amplitude of boundary input
$$u|_{\gamma \times (0,T)} << ||u||_{E \times (0,T)} \sim e^{-c_0 T}$$
:

Large boundary inputs and *T* yield contradiction!

complicated geometry case

§3. Uniqueness by Bang-bang inputs

$$\partial_t u = \Delta u + \mu(t) f(x) \quad \text{in } \Omega \setminus \overline{D}_1, \quad u|_{\partial(\Omega \setminus D_1)} = 0$$

and

$$\partial_t v = \Delta v + \mu(t) f(x) \quad \text{in } \Omega \setminus \overline{D}_2, \quad v|_{\partial(\Omega \setminus D_2)} = 0.$$

f: interior input amplitude, supp f is small included in $\Omega \setminus (D_1 \cup D_2)$: for example, supp f is close to $\partial \Omega$,

$$\mu(t) = \begin{cases} 1, & 0 \le t \le t_0, \\ 0, & t_0 < t \le T. \end{cases}$$

Theorem 2 (Uniqueness by Bang-bang iput).

If $\partial_{\mathcal{V}} u = \partial_{\mathcal{V}} u$ on $\gamma \times (0, T)$, then $D_1 = D_2$.

Key. Let $\widetilde{\Omega} \subset \mathbb{R}^n$ be bounded domain, $f \not\equiv 0$ in $\widetilde{\Omega}$ and

$$\mu(t) = \begin{cases} 1, & 0 \le t \le t_0, \\ 0, & t_0 < t \le T. \end{cases}$$

and

$$\left\{ \begin{array}{cc} \partial_t U = \Delta U + \mu(t) f(x) & \text{in } \widetilde{\Omega} \times (0,T), \\ U|_{\partial \widetilde{\Omega}} = 0. \end{array} \right.$$

Then U is not time-analytic in any domain E outside of supp f.

Remarks. (1) *E* must be open set:

Let $f=\varphi$ be some eigenfunction of $-\Delta$ for λ , and $\varphi(x_0)=0$. Then $U(x,t)=\varphi(x)\int_0^t e^{-\lambda(t-s)}\mu(s)ds$ is solution and for any μ , $U(x_0,t)\equiv 0$ is time analytic.

(2) Conjecture: Let subdomain $E \subset \widetilde{\Omega} \setminus \text{supp } f$. If $U|_E$ is time analytic, then μ is time analytic?

("equivalence" of time-analyticity of data and solution!)

Proof of Key \Longrightarrow Theorem 2.

Assume $D_1 \neq D_2$ and supp f is outside of $D_1, D_2 \Longrightarrow \text{Then } \exists E \subset \subset (\Omega \setminus \overline{D_1}) \cap D_2$

$$\begin{cases} \partial_t u = \Delta u & \text{in } E \times (0, T), \\ u|_{\partial E} = 0. \end{cases}$$

 $\implies u|_E$ is time analytic: $u(t) = e^{-tA}u(0)$ in E

Moreover

$$\begin{cases} \partial_t u = \Delta u + \mu(t) f(x) & \text{in } \Omega \setminus \overline{D_1}, \\ u|_{\partial(\Omega \setminus \overline{D_1})} = 0. \end{cases}$$

The key implies $u|_E$ is not time analytic: contradiction

Proof of Key

$$U(t) = e^{-tA}U(0) + \int_0^t (e^{-(t-s)A}f)\mu(s)ds, \quad t > 0.$$

Let χ restriction operator: $\chi v := v|_E$ Then

$$\chi U(t) = \left\{ \begin{array}{c} \chi A^{-1} f - \chi e^{-tA} A^{-1} f + \chi e^{-tA} U(0), & 0 < t \le t_0, \\ \chi e^{-(t-t_0)A} A^{-1} f - \chi e^{-tA} A^{-1} f + \chi e^{-tA} U(0), & t_0 < t \le T \end{array} \right.$$

 \Longrightarrow

$$H(t) = \begin{cases} \chi A^{-1} f, & 0 < t \le t_0, \\ \chi e^{-(t-t_0)A} A^{-1} f, & t_0 < t \le T \end{cases}$$

is analytic in t > 0.

$$\Longrightarrow A^{-1}f = 0$$
 in $E \Longrightarrow f = 0$ in $\widetilde{\Omega}$.

Thank you very much for your attention!