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Introduction

Let d > 2 and U; C RY be an open set with the smooth boundary M;,

Vt € [0, T). The family of the hypersurfaces {M;} (o, 1) is called a mean

curvature flow (MCF) if the following hold:
v=h, on M, te(0,T).

v : normal velocity vec. of M;, h: mean curvature vec. of M;

(1)

My
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Introduction

Problem

Let O, 0_ C R? be open sets (with the smooth boundaries). In this talk,

for the mean curvature flow {My}c[o, ) with Neumann boundary
condition, we add the following restriction:

O+C Ut and Utﬂo_=@
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Introduction

Known results (Existence of MCF with obstacles)

o Almeida-Chambolle-Novaga (2012)
Global existence of flat MCF (d > 2), and short time existence of
viscosity solution (d = 2), when 904 : C1?

@ Mercier-Novaga (2015)
Short time existence of viscosity solution (d > 2), and Global
existence when 0O, are graphs.

o Ishii-Kamata-Koike (2017)
Global existence of the viscosity solution to |V”’;J‘ = div(‘g—Z') with
f <u<g, where f,g € W?.

o T.(2021)

Global existence of Brakke flow when d = 2,3, Q = T9, and
00, : CL1.
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Introduction

Theorem (Nik-T., submitted)

Let d > 2, Q Cc RY be a bounded domain with the smooth boundary,
Up C Q be open set, My := OUp \ K is smooth, 90, ,00_ are C*1,
Then there exists a Brakke's mean curvature flow {fit}+e[0,00) With
generalized Neumann boundary condition and obstacles.

More details will be provided later.

@ We use the phase field method for the proof.

@ The Neumann boundary condition for Brakke's MCF is studied by
Mizuno-Tonegawa (2015), Kagaya (2019), and Edelen (2020).
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Introduction

Idea of Mercier-Novaga (2015) : For simplicity, let d =2 (i.e. M; is a
curve) and  be the curvature vector of the obstacle.

Then |k| > |h| at xp. Therefore we consider the MCF with forcing term:

v=~h+gn, on M, te(0,00),

where
C, if x S O+,
gx)=q-C, ifxeO_, C:= Xrenaagi |k (x)|
0, otherwise,
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Phase field method

First we recall the phase field method for MCF.

J J (1 _ 52)2 _
Lete >0, Q:=T9 = (R/Z)° and W(s) := — We consider
. e WY
Epr = EAQD - T? (X7 t) € x (0700)7 (AC)
©°(x,0) = p5(x), x € Q.
€01
Mg
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Phase field method

First we recall the phase field method for MCF.

J J (1 _ 52)2 _
Lete >0, Q:=T9 = (R/Z)° and W(s) := — We consider
W'(¥°)
E@% = €Ag06 — T, (X7 t) € Q x (0,00), (AC)
©°(x,0) = p5(x), x € Q.

Remark (Convergence to MCF)

Let M; := {x € Q: ¢p°(x,t) = 0} and {M;}c[o,7) be a smooth MCF.
Roughly speaking,

M§— My = M;— M, Vte[0,T) ase— 0.

(see Bronsard-Kohn (1991), X. Chen (1992), Evans-Soner-Souganidis
(1992), Abels-Moser (2019, 2022), Laux-Simon (2018), Moser (2023))
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Phase field model

We consider

/
ep; = el — (SD +g5/2W (%), (x,t) € Q x(0,00),

%" (x,t) =0, (x,t) € 9Q x (0, 00),
©°(x,0) = p5(x), x € Q,
(AC’)
where
C, ifxe Oy,
g(x)~¢—-C, ifxeO_, C > 0 (given later)
0, otherwise,

1, on M; ={¢°(:,t) =0},
2W(¢g):1_(¢5)2%{ t {90( ) }

0, otherwise.

The forcing term affects only on M = (AC') has good property !
Note: T. (2017,2023) used a similar estimate for volume preserving MCF.
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Definition of Brakke's MCF

Let {M;}:>0 be a (d — 1)-dim smooth MCF in R (OM, = )). Then for
any non-negative ¢ € CL(RY x [0,00)) and 0 < t; < tp < 00 we have

¢ de 1
M

/ / — ¢lhP* + V- h+%> dHIdt.
t=t; M,
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Definition of Brakke's MCF

Let {M;}:>0 be a (d — 1)-dim smooth MCF in R (OM, = )). Then for
any non-negative ¢ € CL(RY x [0,00)) and 0 < t; < tp < 00 we have

¢ dHI
M

/ / — ¢l + V- h+ a¢> dHe L dt.
B(M;, ¢, t1, t) (Brakke's ineq.)

Proposition

Let M, C RY be a smooth hypersurface for t > 0. Then the following are
equivalent:

o {Mt}tzo is a MCF.

@ For any non-negative ¢ € CL(R? x [0,00)) and 0 < t; < tp < o0,
M, satisfies Brakke's ineq.

v
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Definition of Brakke's MCF with boundary

(Characterization of the B.C.)

For any g € C}(R?; RY), we consider the first variation of M,:

IVi(g) = /M divp,g dHI ™t = —Aﬂ h-gdHI™t + /{;M v gdHI2.

Thus 6 Vi |oa(g faMt - g dH972. Therefore if v = v on OM, N I9Q,
then for any g € Cl(]Rd RY),

5VelJa(8) = Vilonlg — (g v)v) = /a v(g—(g-r) a2 <0,
Roughly speaking, we define Neumann B.C. for the varifold by
SVeloalg) =0,  Vge CHRYRY).

(Mizuno-Tonegawa (2015) proved [|V;|Jq+6 Vs all < ||Vi| ae. t > 0)
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Main results

We assume the following:
@ d>2 Qc R? be a bounded domain with smooth boundary.
@ My is C and My L 99 on QN OMp.
© There exists Ry > 0 s.t.

or= |J Brk

Bry(x)COx

and dist (04, 0_) >0, Oy C Uy, dist(My, O+) > 0.

€ 2 e
o) = 7 [ o (T T o g e cqm,

Here, ©° is a sol. of (AC') and ¢ := f_ll V2W(s) ds.

Under some suitable conditions, 3 (d — 1)-rectifiable set M;, 36, : My — Z~,o,
3 {6,‘}?21 s.t.

e — pe = 0,H L M, -

v
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Main results

Theorem (Nik-T., submitted)

There exist a families of Radon measures {11t} +c[0,o0) and Caccioppoli sets
{ Ut} tej0,00) st the following hold:

O 1o =M1 pm, and for a.e. t >0, p; is integral on Q\ (O, U O_),
and there exists a generalized mean curvature vector h(-, t) € L?(u)
in the sense of Mizuno-Tonegawa.

@ Forany t >0, 9*U; Csptus, Or C U, Uy N O_ =10,
spt s N O = (.

© V non-negative ¢ € C}(Q x [0, 0)) with spt¢(-,t) N O+ = () and
Vo(,t)-v=00n0QforVt>0,and 0 <Vit; < Vi, < o0,

/stdut

@ ¢ satisfies Neumann B.C. in the sense of Mizuno-Tonegawa.

) to
t=t = /t1 /Q{(_h¢ + V@) - h+ ¢} duedt.

v
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Sub solution and super solution

Assume that Bg,(0) C Oy (the assumption “004 is C1''" comes from
Ro > 0). For x € Bry+5(0), we set

r(x) = — ‘1 + ¢
T T R+ 02— X2 T

oo (R PR (Rot0)° — RS
1-= 2R, ’ 2 = 2R, )

u®(x) :=tanh(r(x)/e) and U (x) := tanh(—r(x)/e).

For sufficiently large C > 0 (Recall: C = ||g°||1), u® is a sub solution to
(AC') if Bg,(0) C O4.
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Sub solution and super solution

Set r® by ¢® = tanh(r¢/e). Then,
W'(¥)

pr = 00" = " + g7V 2W(y)
W'(¢)
= rf=Ar"+ VrE2 —1) +g°
fary (VAR 1) b
2tanh( ¢ /e)

—AF 4 (1-|VFP)+&°  (R)

Hence we only need to check that r is the sub solution to (R).
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Thank you for your kind attention !
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