On obstacle problem for Brakke's mean curvature flow with Neumann boundary condition

Keisuke Takasao

Department of Mathematics, Kyoto University

Joint work with Katerina Nik (TU Delft)

June 3, 2024

Definition

Let $d \geq 2$ and $U_t \subset \mathbb{R}^d$ be an open set with the smooth boundary M_t , $\forall t \in [0, T)$. The family of the hypersurfaces $\{M_t\}_{t \in [0, T)}$ is called a mean curvature flow (MCF) if the following hold:

$$v = h, \quad \text{on } M_t, \ t \in (0, T). \tag{1}$$

v: normal velocity vec. of M_t , h: mean curvature vec. of M_t

Problem

Let $O_+, O_- \subset \mathbb{R}^d$ be open sets (with the smooth boundaries). In this talk, for the mean curvature flow $\{M_t\}_{t\in[0,T)}$ with Neumann boundary condition, we add the following restriction:

$$O_+ \subset U_t$$
 and $U_t \cap O_- = \emptyset$

Known results (Existence of MCF with obstacles)

- Almeida-Chambolle-Novaga (2012) Global existence of flat MCF ($d \ge 2$), and short time existence of viscosity solution (d = 2), when $\partial O_{\pm} : C^{1,1}$
- Mercier-Novaga (2015) Short time existence of viscosity solution ($d \ge 2$), and Global existence when ∂O_{\pm} are graphs.
- Ishii-Kamata-Koike (2017) Global existence of the viscosity solution to $\frac{u_t}{|\nabla u|} = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$ with $f \leq u \leq g$, where $f, g \in W^{2,\infty}$.
- T. (2021) Global existence of Brakke flow when $d=2,3,~\Omega=\mathbb{T}^d$, and $\partial O_+:C^{1,1}$.

Theorem (Nik-T., submitted)

Let $d \geq 2$, $\Omega \subset \mathbb{R}^d$ be a bounded domain with the smooth boundary, $U_0 \subset \Omega$ be open set, $M_0 := \partial U_0 \setminus \partial \Omega$ is smooth, $\partial O_+, \partial O_-$ are $C^{1,1}$. Then there exists a Brakke's mean curvature flow $\{\mu_t\}_{t \in [0,\infty)}$ with generalized Neumann boundary condition and obstacles.

More details will be provided later.

Remark

- We use the phase field method for the proof.
- The Neumann boundary condition for Brakke's MCF is studied by Mizuno-Tonegawa (2015), Kagaya (2019), and Edelen (2020).

Idea of Mercier-Novaga (2015): For simplicity, let d=2 (i.e. M_t is a curve) and κ be the curvature vector of the obstacle.

Then $|\kappa| \ge |h|$ at x_0 . Therefore we consider the MCF with forcing term:

$$v = h + gn$$
, on M_t , $t \in (0, \infty)$,

where

$$g(x) pprox egin{cases} C, & ext{if } x \in O_+, \ -C, & ext{if } x \in O_-, \ 0, & ext{otherwise}, \end{cases} C := \max_{x \in \partial O_\pm} |\kappa(x)|$$

Phase field method

First we recall the phase field method for MCF.

Let
$$\varepsilon>0$$
, $\Omega:=\mathbb{T}^d=(\mathbb{R}/\mathbb{Z})^d$ and $W(s):=\frac{(1-s^2)^2}{2}$. We consider

$$\begin{cases} \varepsilon \varphi_t^{\varepsilon} = \varepsilon \Delta \varphi^{\varepsilon} - \frac{W'(\varphi^{\varepsilon})}{\varepsilon}, & (x, t) \in \Omega \times (0, \infty), \\ \varphi^{\varepsilon}(x, 0) = \varphi_0^{\varepsilon}(x), & x \in \Omega. \end{cases}$$
 (AC)

Phase field method

First we recall the phase field method for MCF.

Let
$$\varepsilon > 0$$
, $\Omega := \mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$ and $W(s) := \frac{(1-s^2)^2}{2}$. We consider

$$\begin{cases} \varepsilon \varphi_t^{\varepsilon} = \varepsilon \Delta \varphi^{\varepsilon} - \frac{W'(\varphi^{\varepsilon})}{\varepsilon}, & (x, t) \in \Omega \times (0, \infty), \\ \varphi^{\varepsilon}(x, 0) = \varphi_0^{\varepsilon}(x), & x \in \Omega. \end{cases}$$
 (AC)

Remark (Convergence to MCF)

Let $M_t^{\varepsilon}:=\{x\in\Omega: \varphi^{\varepsilon}(x,t)=0\}$ and $\{M_t\}_{t\in[0,T)}$ be a smooth MCF. Roughly speaking,

$$M_0^{arepsilon} o M_0 \ \Rightarrow \ M_t^{arepsilon} o M_t \ orall \, t \in [0,\,T) \ \ {
m as} \ arepsilon o 0.$$

(see Bronsard-Kohn (1991), X. Chen (1992), Evans-Soner-Souganidis (1992), Abels-Moser (2019, 2022), Laux-Simon (2018), Moser (2023))

Phase field model

We consider

$$\begin{cases} \varepsilon \varphi_t^{\varepsilon} = \varepsilon \Delta \varphi^{\varepsilon} - \frac{W'(\varphi^{\varepsilon})}{\varepsilon} + \mathbf{g}^{\varepsilon} \sqrt{2W(\varphi^{\varepsilon})}, & (x,t) \in \Omega \times (0,\infty), \\ \frac{\partial \varphi^{\varepsilon}}{\partial \nu}(x,t) = 0, & (x,t) \in \partial \Omega \times (0,\infty), \\ \varphi^{\varepsilon}(x,0) = \varphi_0^{\varepsilon}(x), & x \in \Omega, \end{cases}$$
(AC')

where

$$g^{\varepsilon}(x) pprox egin{cases} C, & ext{if } x \in O_+, \\ -C, & ext{if } x \in O_-, \\ 0, & ext{otherwise}, \end{cases} \qquad C > 0 ext{ (given later)}$$

Remark

$$\sqrt{2W(arphi^arepsilon)} = 1 - (arphi^arepsilon)^2 pprox egin{cases} 1, & ext{on } M_t^arepsilon = \{arphi^arepsilon(\cdot,t) = 0\}, \ 0, & ext{otherwise}. \end{cases}$$

The forcing term affects only on $M_t^{\varepsilon} \Rightarrow (AC')$ has good property! Note: T. (2017,2023) used a similar estimate for volume preserving MCF.

Definition of Brakke's MCF

Let $\{M_t\}_{t\geq 0}$ be a (d-1)-dim smooth MCF in \mathbb{R}^d $(\partial M_t=\emptyset)$. Then for any non-negative $\phi\in C^1_c(\mathbb{R}^d\times[0,\infty))$ and $0\leq t_1< t_2<\infty$ we have

$$\int_{M_t} \phi \, d\mathcal{H}^{d-1} \Big|_{t=t_1}^{t_2} = \int_{t_1}^{t_2} \int_{M_t} \left(-\phi |h|^2 + \nabla \phi \cdot h + \frac{\partial \phi}{\partial t} \right) d\mathcal{H}^{d-1} dt.$$

Definition of Brakke's MCF

Let $\{M_t\}_{t\geq 0}$ be a (d-1)-dim smooth MCF in \mathbb{R}^d $(\partial M_t=\emptyset)$. Then for any non-negative $\phi\in C^1_c(\mathbb{R}^d\times[0,\infty))$ and $0\leq t_1< t_2<\infty$ we have

$$\int_{M_t} \phi \, d\mathcal{H}^{d-1} \Big|_{t=t_1}^{t_2} \leq \int_{t_1}^{t_2} \int_{M_t} \left(-\phi |h|^2 + \nabla \phi \cdot h + \frac{\partial \phi}{\partial t} \right) d\mathcal{H}^{d-1} dt.$$

$$=: \mathcal{B}(M_t, \phi, t_1, t_2) \qquad \text{(Brakke's ineq.)}$$

Proposition

Let $M_t \subset \mathbb{R}^d$ be a smooth hypersurface for $t \geq 0$. Then the following are equivalent:

- \bigcirc $\{M_t\}_{t>0}$ is a MCF.
- ② For any non-negative $\phi \in C^1_c(\mathbb{R}^d \times [0,\infty))$ and $0 \le t_1 < t_2 < \infty$, M_t satisfies Brakke's ineq.

Definition of Brakke's MCF with boundary (Characterization of the B.C.)

For any $g \in C_c^1(\mathbb{R}^d; \mathbb{R}^d)$, we consider the first variation of M_t :

$$\delta V_t(g) := \int_{M_t} \operatorname{div}_{M_t} g \ d\mathcal{H}^{d-1} = - \int_{M_t} h \cdot g \ d\mathcal{H}^{d-1} + \int_{\frac{\partial M_t}{}} \gamma \cdot g \ d\mathcal{H}^{d-2}.$$

Thus $\delta V_t \lfloor_{\partial\Omega}(g) = \int_{\partial M_t} \gamma \cdot g \ d\mathcal{H}^{d-2}$. Therefore if $\gamma \equiv \nu$ on $\partial M_t \cap \partial\Omega$, then for any $g \in C_c^1(\mathbb{R}^d; \mathbb{R}^d)$,

$$\delta V_t \lfloor_{\partial\Omega}^\top (g) := \delta V_t \lfloor_{\partial\Omega} (g - (g \cdot \nu) \nu) = \int_{\partial M_t} \nu \cdot (g - (g \cdot \nu) \nu) \, d\mathcal{H}^{d-2} = 0.$$

Roughly speaking, we define Neumann B.C. for the varifold by

$$\delta V_t \lfloor_{\partial\Omega}^{\top}(g) = 0, \qquad \forall \, g \in C_c^1(\mathbb{R}^d; \mathbb{R}^d).$$

(Mizuno-Tonegawa (2015) proved $\|\delta V_t \lfloor_{\partial\Omega}^\top + \delta V_t \lfloor_{\Omega}\| \ll \|V_t\|$ a.e. $t \geq 0$)

Main results

We assume the following:

- **1** $d \geq 2$, $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary.
- ② M_0 is C^1 and $M_0 \perp \partial \Omega$ on $\partial \Omega \cap \partial M_0$.
- 3 There exists $R_0 > 0$ s.t.

$$O_{\pm} = \bigcup_{B_{R_0}(x) \subset O_{\pm}} B_{R_0}(x)$$

and dist $(O_+, O_-) > 0$, $O_+ \subset U_0$, dist $(M_0, O_\pm) > 0$.

Remark

$$\mu_t^{\varepsilon}(\phi) := \frac{1}{\sigma} \int_{\Omega} \phi \left(\frac{\varepsilon |\nabla \varphi^{\varepsilon}(x,t)|^2}{2} + \frac{W(\varphi^{\varepsilon}(x,t))}{\varepsilon} \right) dx, \ \phi \in C_c(\Omega).$$

Here, φ^{ε} is a sol. of (AC') and $\sigma := \int_{-1}^{1} \sqrt{2W(s)} \, ds$.

Under some suitable conditions, \exists (d-1)-rectifiable set M_t , $\exists \theta_t : M_t \to \mathbb{Z}_{>0}$, $\exists \{\varepsilon_i\}_{i=1}^{\infty}$ s.t.

$$\mu_t^{\varepsilon_i} \rightharpoonup \mu_t := \theta_t \mathcal{H}^{d-1} \lfloor_{M_t}.$$

Main results

Theorem (Nik-T., submitted)

There exist a families of Radon measures $\{\mu_t\}_{t\in[0,\infty)}$ and Caccioppoli sets $\{U_t\}_{t\in[0,\infty)}$ s.t. the following hold:

- $\mu_0 = \mathcal{H}^{d-1}\lfloor_{M_0}$ and for a.e. $t \geq 0$, μ_t is integral on $\Omega \setminus \overline{(O_+ \cup O_-)}$, and there exists a generalized mean curvature vector $h(\cdot, t) \in L^2(\mu_t)$ in the sense of Mizuno-Tonegawa.
- ② For any $t \geq 0$, $\partial^* U_t \subset \operatorname{spt} \mu_t$, $O_+ \subset U_t$, $U_t \cap O_- = \emptyset$, $\operatorname{spt} \mu_t \cap O_{\pm} = \emptyset$.
- ∀ non-negative $\phi \in C^1(\overline{\Omega} \times [0,\infty))$ with spt $\phi(\cdot,t) \cap O_{\pm} = \emptyset$ and $\nabla \phi(\cdot,t) \cdot \nu = 0$ on $\partial \Omega$ for $\forall t \geq 0$, and $0 \leq \forall t_1 < \forall t_2 < \infty$,

$$\int_{\Omega} \phi \, d\mu_t \Big|_{t=t_1}^{t_2} \leq \int_{t_1}^{t_2} \int_{\Omega} \{ (-h\phi + \nabla \phi) \cdot h + \phi_t \} \, d\mu_t dt.$$

 \bullet μ_t satisfies Neumann B.C. in the sense of Mizuno-Tonegawa.

Sub solution and super solution

Assume that $B_{R_0}(0)\subset O_+$ (the assumption " ∂O_\pm is $C^{1,1}$ " comes from $R_0>0$). For $x\in B_{R_0+\delta}(0)$, we set

$$\begin{split} \underline{r}(x) := -\frac{c_1}{(R_0 + \delta)^2 - |x|^2} + c_2, \\ c_1 := \frac{\left((R_0 + \delta)^2 - R_0^2\right)^2}{2R_0}, \qquad c_2 := \frac{(R_0 + \delta)^2 - R_0^2}{2R_0}, \\ \underline{u}^\varepsilon(x) := \tanh(\underline{r}(x)/\varepsilon) \quad \text{and} \quad \overline{u}^\varepsilon(x) := \tanh(-\underline{r}(x)/\varepsilon). \end{split}$$

Lemma

For sufficiently large C>0 (Recall: $C=\|g^\varepsilon\|_{L^\infty}$), $\underline{u}^\varepsilon$ is a sub solution to (AC') if $B_{R_0}(0)\subset O_+$.

Sub solution and super solution

Set r^{ε} by $\varphi^{\varepsilon} = \tanh(r^{\varepsilon}/\varepsilon)$. Then, $\varphi^{\varepsilon}_{t} = \Delta \varphi^{\varepsilon} - \frac{W'(\varphi^{\varepsilon})}{\varepsilon^{2}} + g^{\varepsilon} \sqrt{2W(\varphi^{\varepsilon})}$ $\Rightarrow r^{\varepsilon}_{t} = \Delta r^{\varepsilon} + \frac{W'(\varphi^{\varepsilon})}{\varepsilon \sqrt{2W(\varphi^{\varepsilon})}} (|\nabla r^{\varepsilon}|^{2} - 1) + g^{\varepsilon}$ $= \Delta r^{\varepsilon} + \frac{2\tanh(r^{\varepsilon}/\varepsilon)}{\varepsilon} (1 - |\nabla r^{\varepsilon}|^{2}) + g^{\varepsilon}. \tag{R}$

Hence we only need to check that \underline{r} is the sub solution to (R).

Thank you for your kind attention!