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Idea

Develop unified methodology
within applied and numerical analysis suitable for the
simulation of complex interface and free boundary motion

• Functional analytic framework for abstract PDEs
• Time dependent function spaces
• Link domain evolution to evolution equation on domains
• Approximate time dependent space by evolving finite element spaces
• Evolving bulk and surface domains approximated by fitted triangulated domains
• Avoid unfitted finite elements and level set equations
• In this talk focus on evolving surfaces



Colleagues and Others

• Dziuk, Deckelnick
• Ranner, Alphonse, Stinner, Venkataraman
• Church, Djurdjevac, Kornhuber
• Hatcher, Caetano, Grassellli,Poiatti
• Sales,Mavrakis
• Garcke, Kovacs
• Reusken+... Miura.
• Apologies to the many who are missing



Evolving compact hypersurfaces

For each t ∈ [0,T ], let Γ(t)⊂ Rn+1 be a compact (i.e., bounded and no boundary)
n-dimensional hypersurface of class C2, and assume the existence of a flow
Φ : [0,T ]×Rn+1→ Rn+1 such that for all t ∈ [0,T ], with Γ0 := Γ(0), the map
Φ0

t (·) := Φ(t, ·) : Γ0→ Γ(t) is a C2-diffeomorphism that satisfies

d
dt

Φ
0
t (·) = w(t,Φ0

t (·))

Φ
0
0(·) = Id(·).

(1)

We think of the map w : [0,T ]×Rn+1→ Rn+1 as a velocity field, and we assume that it is
sufficiently smooth and in particular in C2. A normal vector field on the hypersurfaces is
denoted by ν : [0,T ]×Rn+1→ Rn+1.
The normal velocity is wν = wν ·νν .
A bulk domain Ω(t) with boundary Γ(t) may be viewed as sub manifold in Rn+2.



Parameterised evolving surfaces

Associated with the map Φ0
t is a parameterisation .

Let Γ (t)⊂ R3 be a closed surface parametrised by X over an initial surface Γ 0:

Γ (t) = {X(p, t) : p ∈ Γ
0}.

Surface velocity w satisfies
∂tX(p, t) = w(X(p, t), t).

The canonical parameterisation would be the normal flow for which the velocity field is in the
normal direction.



Material derivative

Normal time derivative Suppose that the velocity field associated to the evolving hypersurface
{Γ(t)} is w = wν +wτ where wν is the normal velocity field and wτ is a tangential velocity
field. In this case, the formula

∂
◦u = ut +∇u ·wν

defines the normal time derivative ∂ ◦u.
For our purposes the material derivative is associated with the parameterisation of the
hypersurface and depends on the tangential velocity.

∂
•u = ∂

◦u+wτ ·∇Γu

A physical material derivative would be

u̇ = ∂
•u+(vτ −wτ ) ·∇Γu

where vτ is a tangential physical material velocity.
Choosing wτ for some purpose of computation or analysis may be appropriate. In numerical
methods this is called the Arbitrary Lagrangian Eulerian (ALE) approach where it is employed
to yield good meshes.



Differential operators on Γ

• Outward normal vector: ν

• Tangential gradient: ∇Γ u == ∇u− (∇u ·ν)ν : Γ → R3

• Laplace–Beltrami operator: ∆Γu = ∇Γ ·∇Γ u

• extended Weingarten map (3×3 symmetric matrix)

A(x) = ∇Γ ν(x)

•

mean curvature H = tr(A) = κ1 +κ2,

and |A|2 = ‖A‖2
F = κ

2
1 +κ

2
2 .



We will write PDEs in a way that is independent of the parametrisation of the domains
i.e. point wise in space time on the evolving domains.
Using a version of Reynolds transport formula for evolving domains we may derive PDEs on
evolving domains via
• Balance laws
• Gradient flow
• Variational



Advection-diffusion on an evolving surface

Let Γ(t) be a time (t) dependent n−dimensional hypersurface in Rn+1.

∂
◦u+∇Γ · (BΓu)−∇Γ · (AΓ∇u)+CΓu = 0 on Γ(t)

u(·,0) = u0 on Γ0 := Γ(0)

AΓ is a smooth diffusion tensor which maps the tangent space of Γ into itself,
BΓ is a tangential vector field,
CΓ is a smooth scalar field.
∂ ◦u denotes the normal time derivative
i.e. the time derivative of a function along a trajectory on Γ(t)× t moving in the direction
normal to Γ(t).



Advection-diffusion on an evolving bulk-surface domain

Let Γ(t) = ∂Ω(t)where Ω(t) is a time dependent bulk domain in Rn+1.

ut +∇ · (BΩu)−∇ · (AΩ∇u)+CΩu = 0 on Ω(t)

(AΩ∇u−BΩu) ·ν +αu−βv = 0 on Γ(t)

u(·,0) = u0 on Ω0 := Ω(0)

∂
◦v+∇Γ · (BΓv)−∇Γ(AΓv)+CΓv+(AΩ∇u−BΩu) = 0 on Γ(t)

v(·,0) = v0 on Γ0 := Γ(0)

where α and β are positive constants.



Surface Navier-Stokes equations

Let Γ(t) be a time (t) dependent 2−dimensional hypersurface in R3.
Seek a triple (u, p1, p2) to the problem:

u ·νΓ =VΓ, (p2) on ∪t∈I {t}×Γ(t)

∂
◦u+u ·∇Γu+∇Γ p1 +2µ0∇Γ ·E(u) =−p2ν + f on ∪t∈I {t}×Γ(t)

∇Γ ·u = 0 (p1) on ∪t∈I {t}×Γ(t)

EΓ(v) =
∇Γv+(∇Γv)T

2
, .

Note: two Lagrange multipliers, (p1, p2).



Combining surface evolution with surface processes

Geometric gradient flow

Concentration dependent energy

E(Γ,u) =
∫

Γ

G(u),

The (L2,H−1)-gradient flow of E yields the coupled geometric flow:

v =−g(u)HνΓ =V νΓ ,

∂
•u+uV H = ∆Γ G′(u),

with g(u) = G(u)−uG′(u).



Evolving Bochner spaces

Definition (Bochner-type spaces)

Define the spaces

L2
X = {u : [0,T ]→

⋃
t∈[0,T ]

X(t)×{t}, t 7→ (ū(t), t) | φ−(·)ū(·) ∈ L2(0,T ;X0)}

L2
X∗ = { f : [0,T ]→

⋃
t∈[0,T ]

X∗(t)×{t}, t 7→ ( f̄ (t), t) | φ∗(·) f̄ (·) ∈ L2(0,T ;X∗0 )}.

More precisely, these spaces consist of equivalence classes of functions agreeing almost
everywhere in [0,T ], just like ordinary Bochner spaces.

For u ∈ L2
X , we will make an abuse of notation and identify u(t) = (ū(t), t) with ū(t) (and

likewise for f ∈ L2
X∗ ).

Theorem
The spaces L2

X and L2
X∗ are Hilbert spaces with the inner products

(u,v)L2
X
=
∫ T

0
(u(t),v(t))X(t) dt

( f ,g)L2
X∗

=
∫ T

0
( f (t),g(t))X∗(t) dt.

(2)



Abstract strong and weak material derivatives

Definition (Strong material derivative)

For ξ ∈C1
X define the strong material derivative ξ̇ ∈C0

X by

ξ̇ (t) := φt

(
d
dt

(φ−tξ (t))
)
.

• We see that the space C1
X is the space of functions with a strong material derivative,

justifying the notation.
•

Definition (Weak material derivative)

For u ∈ L2
V , if there exists a function g ∈ L2

V∗ such that∫ T

0
〈g(t),η(t)〉V∗(t),V(t) =−

∫ T

0
(u(t), η̇(t))H(t)−

∫ T

0
λ (t;u(t),η(t))

holds for all η ∈DV (0,T ), then we say that g is the weak material derivative of u, and we write
u̇ = g or ∂ •u = g.

The form λ is identified using the push forward map. This concept of a weak material derivative
is indeed well-defined: if it exists, it is unique, and every strong material derivative is also a
weak material derivative.



Transport theorem/Integration by parts

Theorem (Transport theorem and formula of partial integration)

For all u, v ∈W (V,V∗), the map
t 7→ (u(t),v(t))H(t)

is absolutely continuous on [0,T ] and

d
dt

(u(t),v(t))H(t) = 〈∂ •u(t),v(t)〉V∗,V(t)+ 〈∂ •v(t),u(t)〉V∗(t),V(t)

+λ (t;u(t),v(t))

for almost every t ∈ [0,T ]. For all u, v ∈W (V,V∗), the following formula of partial integration
holds

(u(T ),v(T ))H(T )− (u(0),v(0))H0

=
∫ T

0
〈∂ •u(t),v(t)〉V∗(t)V(t)+ 〈∂ •v(t),u(t)〉V∗(t)V(t)

+λ (t;u(t),v(t)) dt.



Model abstract problem

Abstract problem
Find u(t) ∈ V(t)

u(0) = u0 ∈ V(0)
∂
•u+A(t)u = f ∈ V∗(t)

written in a variational form as

〈∂ •u,v〉V∗(t),V(t)+a(t;u,v) = 〈 f ,v〉V∗(t),V(t)

u(0) = u0

with associated (arbitrary) family of Hilbert triples

V(t)⊂H(t)⊂ V∗(t), t ∈ [0,T ]

parametrised by t ∈ [0,T ].



Model abstract problem: Saddle point problem

For t ∈ R+ let Y (t) and X(t) be, respectively, given families of evolving Hilbert and Banach
spaces. We denote the dual X(t) as X∗(t) and assume we have the Gelfand triple structure:

X(t)⊂ Y (t)⊂ X∗(t).

where we refer to Y (t) as the pivot space. Let Z(t) be an evolving Banach family. We are
concerned with the linear saddle-point problem:

∂
•u(t)+A(t)u(t)+B∗(t)p(t) = f (t) ∈ X∗(t),

B(t)u(t) = g(t) ∈ Z∗(t),

u(0) = u0 ∈ Y (0).

with ∂ •t u denoting the material derivative and we seek a pair of solutions (u, p).



Analysis Based Computation

ABC Methodology

• Construct finite dimensional spaces as analogues of the continuous spaces
• Approximation theory
• Construct discrete analogues of bilinear forms in variational setting
• Well posedness of discrete problem
• Perturbation bounds for bilinear forms
• Error analysis via well posedness of continous problem and consistency



PDE and Finite Element setting

PDE analysis
• Domain and function spaces
• PDE: Initial value problem
• Bilinear forms and transport formulae
• Variational formulation
• Verify assumptions

Numerical analysis
• Evolving bulk finite element spaces
• Lifted bulk finite element spaces
• Evolving surface finite element spaces
• Lifted surface finite element spaces
• Discrete material derivatives and transport formulae

All these require precise definitions.



Tasks for realisation of abstract theory

Define
• Evolving finite element
• Evolving triangulation
• Evolving finite element space

Establish
• Approximation properties
• Lifted evolving spaces

Realise
• Ωh(t) and Γh(t) by interpolation, for example.

Evolving nodes on initial triangulations by velocity field
• Sh(t)

Establish
• Discrete bilinear forms
• Approximation estimates
• Ritz projection and for material derivative



Surface finite elements

Figure: Examples of different surface finite elements in the case n = 2. Left shows a reference finite element
(in green), centre shows an affine finite element and right shows an isoparametric surface finite element with
a quadratic FK . The plot shows the element domains in red and the location of nodes in blue.



Evolving isoparametric surface finite element

Figure: Examples of construction of an isoparametric evolving surface finite element for k = 3. The
Lagrange nodes ai(t) follow the dashed black trajectories from the initial element K0 ⊂ Γh,0 to a element
K(t)⊂ Γh(t).



Model abstract lifted discrete problem

Abstract lifted problem

Find u`h(t) ∈ V`
h(t)

u`h(0) = uh,`
0 ∈ V`

h(0)

∂
•,`
h u`h +A`

h(t)u
`
h = f `h

written in a variational form as

〈∂ •,`h u`h,v〉V∗(t),V(t)+a`h(t;uh,v) = 〈 f `h ,v〉V∗(t),V(t),∀v ∈ V`
h(t)

u`h(0) = uh,`
0

V`
h(t)⊂ V(t)



The relationships between evolving function spaces

• H(t) pivot space
• V(t) solution spaces
• Z0(t) regularity space for dual problem
• Z(t) higher regularity space for solution with specific data

H(t) V(t) Z0(t) Z(t)

S`
h(t)

Sh(t)

Hh(t) Vh(t)

⊂
⊃

⊂ denotes subspace inclusion
↪→ denotes continuous embedding

↔ denotes that the lift is a bijection between these spaces.



Discrete material derivative

• Since Sh(t) is a closed subspace of Vh(t) it is a Hilbert space and forms a compatible pair
(Sh(t),φ h

t |Sh,0)t∈[0,T ].

• Well defined spaces L2
Sh

and C1
Sh

and the material derivative ∂ •h χh is well defined for
χh ∈C1

Sh
.

• Defines the spaces L2
Hh

,L2
Vh

and C1
Hh

,C1
Vh

. For ηh ∈C1
Hh

, we denote by ∂ •h ηh the (strong)
material derivative ) with respect to the push-forward map φ h

t defined by

∂
•
h ηh := φ

h
t (

d
dt

φ
h
−tηh).



Basis functions and transport property

Let {χi(·,0)}N
i=1 be a basis of Sh,0 and push-forward to construct a time dependent basis

{χi(·, t)}N
i=1 of Sh(t) by

χi(·, t) = φ
h
t (χi(·,0)).

It follows that
∂
•
h χi = 0

so that for a decomposition

χh(t) :=
N

∑
i=1

γi(t)χi(t) for all χh ∈ Sh(t),

we compute that

∂
•
h χh =

N

∑
i=1

γ̇i(t)χi(t) for all χh ∈C1
Sh
.



Another discrete material derivative approipriate for analysis

∂ •` η denotes the material derivative for the push-forward map φ `
t .

∂
•
` η := φ

`
t

d
dt

(φ `
−tη) for all η ∈C1

(H,φ `).

This is a different material derivative to the material derivative defined with respect to the
push-forward map φ h

t .
Important observation of Dziuk and Elliott, the following commutation result holds:

∂
•
` (η

`
h) = (∂ •h ηh)

` for all ηh ∈C1
Hh

.

Indeed:

∂
•
` (η

`
h) = φ

`
t

d
dt

(
φ
`
−t(η

`
h)
)
=

(
φ

h
t

(( d
dt
(φ h
−tηh)

`
)−`))`

=

(
φ

h
t

( d
dt
(φ h
−tηh)

))`

= (∂ •h ηh)
`,

since the lift at time t = 0 and time derivative commute and (·)` and (·)−` are inverses.

Lemma
ηh ∈C1

Hh
if, and only if, η`

h ∈C1
(H,φ `)

, and ηh ∈C1
Vh

if, and only if, η`
h ∈C1

(V ,φ `)
.



Weak and variational formulation of the advection diffusion equation

For every ϕ(·, t) ∈ H1(Γ(t))
Weak form ∫

Γ(t)
∂
•uϕ +

∫
Γ(t)

uϕ ∇Γ · v+
∫

Γ(t)
∇Γu ·∇Γϕ = 0

Variational form

d
dt

∫
Γ(t)

uϕ +
∫

Γ(t)
∇Γu ·∇Γϕ =

∫
Γ(t)

u∂
•
ϕ

Abstract variational form
d
dt

(u,ϕ)+a(u,ϕ) = m(u,∂ •ϕ).



ESFEM

Finite element method

d
dt

(Uh,φh)h +ah(Uh,φh) = (Uh,∂
•
h φh)h, Uh(·,0) =Uh0. (3)

Evolving mass matrix

M(t) jk =
∫

Γh(t)
χ jχk,

Evolving stiffness matrix

S(t) jk =
∫

Γh(t)
∇Γh χ j∇Γh χk,

Uh = ∑
N
j=1 α jχ j, α = (α1, . . . ,αN)

Algebraic form
d
dt

(M(t)α)+S(t)α = 0, (4)

which does not explicitly involve the velocity of the surface.



Error analysis: Not quite accurate but near!!

1
2

d
dt

(θ ,θ)−h+ah(θ ,θ) = Fh(θ).

Theorem
Let u be a sufficiently smooth solution satisfying

sup
t∈(0,T )

‖u‖2
Hk+1(Γ(t))+

∫ T

0
‖∂ •u‖2

Hk+1(Γ(t))dt < ∞

and let u`h(, t) =U l
h(·, t), t ∈ [0,T ] be the spatially discrete solution with initial data uh0 =U l

h0
satisfying

‖u(·,0)−u`h0‖L2(Γ(0)) ≤ chk+1.

Then the error estimate

sup
t∈(0,T )

‖u(·, t)−u`h(·, t)‖L2(Γ(t)) ≤ chk+1

holds for a constant c independent of h.



Outlook

Extensions
• Nonlinear equations

Evolving Surface Navier-Stokes Cahn-Hilliard system
• Moving boundaries on moving boundaries

Stefan problems, Geometric Curve Motion on evolving surfaces
• Coupling of bulk surface problems in prescribed evolving domains

Advection diffusion on bulk and interface domains
• Coupling PDE equations to flow of function spaces

MCF and diffusion, Flows in moving domains
• Flow maps φ allowing good discrete flows

Harmonic map heat flow, De Turck trick, BGN approach
• Viscosity Solutions PDEs on prescribed evolving surfaces

Hamilton-Jacobi


