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Patient – Mean curvature flow

Surface evolution under mean curvature flow:

v = −Hν,

where H is the mean curvature and ν is the outward unit normal field of
Γ [X ].

The flow has nice properties (e.g. maximum principle, avoidance property,
etc.). [Huisken (1984)], [...]

The “heat equation” for surface flows.
Singularities occur for d ≥ 2.
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A flow requiring “treatment” – a pinch singularity
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In reality – cell division by contractile ring formation

Experiment by E. Fischer-Friedrich (TU Dresden & FOR 3013).
[Wittwer and Aland (2022)], [Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)]
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The Cure – Goal of this talk

How can we pass through singularities?

We do surgery!

How can we pass through singularities for parametric methods?

We do surgery!

Ideas are from Ricci flow with surgery:
Hamilton (1982,1993,1997) ←− Hamilton’s programme

Perelman (2002,2003a,b) −→ solving the Poincaré conjecture
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Further literature

Mean curvature flow with surgery
Huisken and Sinestrari (2009)
Brendle and Huisken (2016,2018)
etc.

Numerical approaches
just compute beyond a singularity (e.g. [Dziuk (1990)])

Balazovjech, Mikula, Petrášová, and Urbán (2012)
Benninghoff and Garcke (2014,2016a,b,2017)

a global approach based on a background grid

non-parametric methods (level-set, phase-field, XFEMs, etc.)
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Surgery in action
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Mean curvature flow with surgery
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The three keys

The Huisken–Sinestrari-type MCF with surgery relies on:

convexity estimate, i.e. regions of high curvature have almost positive
definite second fundamental form;

cylindrical estimate, i.e. for a 2-convex flow, regions of high
curvature are either uniformly convex or close to a cylinder;

gradient estimate, which gives derivative bounds depending only at
the curvature at a single point.

[Haslhofer and Kleiner (2017)]
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Mean curvature flow with surgery – I.

Algorithm (Mean curvature flow with surgery )
Data: Let Γ 0 ⊂ Rn+1 be a closed embedded initial surface.

Let the curvature thresholds H1 < H2 < H3 be given.
(a) Let the smooth flow evolve Γ (t) until time t such that

max{H(·, t)} > H3.
(b) Perform surgeries on necks, removing all points with curvature

greater than H2.
Right after surgery, maximal curvature drops below H2.

(c) Repeat the Steps (a) and (b) until the flow goes extinct.

[Huisken and Sinestrari (2009)] (n ≥ 3, κ0
1 + κ0

2 ≥ 0)
[Brendle and Huisken (2016)] (R3, H0 > 0)
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Mean curvature flow with surgery – II.

Theorem [Brendle and Huisken (2016)]

Let Γ 0 be a closed, embedded surface in R3, with positive mean
curvature. Then there exists a mean curvature flow with surgeries starting
from Γ 0 which terminates after finitely many steps.

Challenges:
Step (b) “perform surgeries on necks”: how? scaling?
key technique: α-noncollapsedness (Rin(x) ≥ α/H(x))
key issue: max{H} ≤ H2 except on the regions diffeomorphic to a
sphere, or a “neck”
send the curvature thresholds H1 < H2 < H3 to infinity, the flow with
surgery converges to the level set solution
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A convergent algorithm for mean curvature flow
with numerical surgery
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The analysts’ approach

A regular surface Γ [X ] moving under mean curvature flow satisfies the
coupled system:

v = −Hν,

∂•ν = ∆Γ [X ]ν + |∇Γ [X ]ν|2 ν,

∂•H = ∆Γ [X ]H + |∇Γ [X ]ν|2H,

∂tX = v .

[Huisken (1984)]

[K., Li and Lubich (2019)]:
Numerical algorithm based on this coupled system.
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Discrete mean curvature flow with surgery

Algorithm (Fully discrete mean curvature flow with surgery)
Data: Let Γ 0

h be the discretised initial surface, with curvature H0
h and

normal vector field ν0
h .

Let the curvature thresholds H3 > H2 be given.
(a) Let the fully discrete algorithm [KLL] evolve Γh[xn], Hn

h , and νn
h until

time tn such that max{Hn
h} > H3.

(b) Perform surgeries on Γh[xn], removing all nodes for which
Hn

h (xn
j ) > H2.

Right after surgery maximal curvature drops to H2.
(c) Repeat the Steps (a) and (b) until the discrete flow goes extinct.

Step (b) is technical (removing elements, computing new geometry, etc.).
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Step (b) – sketch
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Step (b) – sewing
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Step (b) – sketch (zoom-in)
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Numerical experiments
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Test-surgery I.
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Time evolution and scaling of max{Hn
h}
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Test-surgery II.
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Test-surgery II.
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Time evolution of max{Hn
h}
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Thank you for your attention!
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