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Level set method in analysis

Evolution of initial surface Iy C R3 that evolves with normal velocity Vy?

Use ¢(-, t) : R® — R with level sets [<(t) := {x | ¢(x,t) = c}.
Initialization: ¢(-,0) ~ signed distance to .
Key principle:

all level sets I'c of ¢ evolve with their normal velocity Viy = Vn(T¢).
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Evolution of initial surface 'y C R3 that evolves with normal velocity Vj?

Use ¢(-, t) : R® — R with level sets Tc(t) := {x | #(x,t) = c}.
Initialization: ¢(-,0) ~ signed distance to Ip.

Key principle:
all level sets I'¢ of ¢ evolve with their normal velocity Viy = V().

This leads to

@+VN|V¢|:0 in QCR3 t>0
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Level set method in analysis

Evolution of initial surface Iy C R3 that evolves with normal velocity Vy?

Use ¢(-, t) : R® — R with level sets [<(t) := {x | ¢(x,t) = c}.
Initialization: ¢(-,0) ~ signed distance to .

Key principle:
all level sets I'c of ¢ evolve with their normal velocity Viy = Vn(T¢).

This leads to

Level set equation

%+VN|V¢|:0 in QcR3 t>0

Example: mean curvature flow

Normal velocity Vi = —mean curvature = —k
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. VY .
Using x = div(n) = le(]V—Z[) one obtains

E 3
— —|V¢|div(=—=) =0 in QCR’ t>0




Using x = div(n) = div(%) one obtains
Level set PDE for mean curvature flow
Vo

¢ . : 3
- — — pr— >
B ]V¢|dlv(|v¢|) 0 in QCR* t>0

Strongly degenerate nonlinear parabolic PDE.

Analysis: well-posedness?
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Using x = div(n) = div(%) one obtains

Level set PDE for mean curvature flow
99 : V . 3
_ — ") = >
B ]V<Z>|dlv(|v¢|) 0 in QCR* t>0

Strongly degenerate nonlinear parabolic PDE.

Analysis: well-posedness?

The notion of viscosity solutions fits well: There exists a unique
global-in-time viscosity solution ¢ for suitable ¢(-,0).

Weak notion can handle singularities.

Implict surface evolution: To(t) = { ¢(-,t) =0} (“fattening”)
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Using x = div(n) = div(%) one obtains

Level set PDE for mean curvature flow

¢ ., Vo . 3
—_— — pr— >
e ]V¢\dlv(|v¢|) 0 in QCR> t>0

Strongly degenerate nonlinear parabolic PDE.

Analysis: well-posedness?

The notion of viscosity solutions fits well: There exists a unique
global-in-time viscosity solution ¢ for suitable ¢(-,0).

Weak notion can handle singularities.
Implict surface evolution: To(t) = { ¢(-,t) =0} (“fattening”)
Extensive work in literature on analysis of PDEs:

[Chen, Giga, Evans, Spruck, 1991]
[Y. Giga, Surface Evolution Equations: A Level Set Approach (2006)]

[X. Bian, Y. Giga, and H. Mitake, A level-set method for a mean curvature flow with a prescribed boundary, Preprint (2023)]
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Many app|icati0ns, cf. [//math.berkeley.edu/sethian/], talk of J. Sethian



Many app|icati0ns, cf. [//math.berkeley.edu/sethian/], talk of J. Sethian

One example: Two-phase incompressible flows (cf. talk of H. Garcke)
Interface: M(t) =001 N o2

D(u) =Vu+Vu', 6 = —pl+ uD(u)

K curvature

T surface tension coefficient




Level set method in numerics

Many applications, cf. [//mathberkeley.cdussethian/], talk of J. Sethian

One example: Two-phase incompressible flows (cf. talk of H. Garcke)

Interface: M(t) = 0Q1 N o Qo

D(u) = Vu+Vu', 0 = —pl+ uD(u)

K: curvature r
T surface tension coefficient

Coupled Navier-Stokes equations

pi(ug + (u- V)u) = =Vp +div (u;D(u)) + pig  in Q;
fori=1,2

divu=0 in Q;

[on]r = 7kn  (surface tension), [ulr=0, Vy=u-n.
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[(t) = zero-level of (x, t)

< 0 for x in phase 3
@(x,t) =< >0 for x in phase

=0 at the interface
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[(t) = zero-level of (x, t)

< 0 for x in phase Q3
o(x,t) =¢>0 for x in phase

=0 at the interface

Navier-Stokes equations coupled with level set equation

() (ut + (u- V)U) - diV(u(so) D(U)) +Vp = p(e)g—T7r(p)drar
V-u = 0

(Pt‘i‘U'ng = 0
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[(t) = zero-level of (x, t)

< 0 for x in phase Q3
o(x,t) =¢>0 for x in phase

=0 at the interface

Navier-Stokes equations coupled with level set equation

() (ut + (u- V)U) - diV(u(w) D(U)) +Vp = p(e)g—T7r(p)drar
V-u = 0

(Pt+U'vg0 = 0

Method can deal with droplet merging/splitting.
Note: u globally defined.
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Narrow band level set method: motivation

An example (our motivation): surface Navier-Stokes equations:

pu = —=Vrp+2udivr(Es(u)) + b + prn
: n I(t),
diviu=20
Geometric evolution of I'(t) is defined by
uy =(u-n)n, 90X =upyoX; X(-, t) : parametrization of I'(t)
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Narrow band level set method: motivation
An example (our motivation): surface Navier-Stokes equations:

pu = —=Vrp+2udivr(Es(u)) + b + prn
divru =0 on (%),

Geometric evolution of I'(t) is defined by
uy =(u-n)n, 90X =upyoX; X(-, t) : parametrization of I'(t)

Here: (normal) velocity uy defined only I'(t).
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Narrow band level set method: motivation

An example (our motivation): surface Navier-Stokes equations:

pu = —=Vrp+2udivr(Es(u)) + b + prn
: n I(t),
diviu=20
Geometric evolution of I'(t) is defined by
uy =(u-n)n, 90X =upyoX; X(-, t) : parametrization of I'(t)

Here: (normal) velocity uy defined only I'(t).

Other example: Mean curvature coupled with surface diffusion, cf.

[Elliott,Garcke,Kovacs, Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces (2022)]
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Narrow band level set method: motivation

An example (our motivation): surface Navier-Stokes equations:

pu = —=Vrp+2udivr(Es(u)) + b + prn
. on (),
diviu=20
Geometric evolution of I'(t) is defined by
uy =(u-n)n, 90X =upyoX; X(-, t) : parametrization of I'(t)

Here: (normal) velocity uy defined only I'(t).

Other example: Mean curvature coupled with surface diffusion, cf.

[Elliott, Garcke,Kovacs, Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces (2022)]
In numerics: Lagrangian or Eulerian approach.

Lagrangian approach: cf. talks of C. Elliott, H. Garcke.

Eulerian approach ~~ narrow band level set method
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Assumption:
uy extended to neighbourhood of I'(t).

Evolving narrow band: o

Q(t) = {x e RY| |p(x,t)] < e}

Time stepping on narrow band QF. g




Narrow band level set method

Assumption: |
uy extended to neighbourhood of '(t). A

Evolving narrow band: b
Qt) == {x € R | [p(x, )] < e}

Time stepping on narrow band . N iiw

Structure of narrow band algorithm
a) Given ¢} specify boundary conditions ¢}, on inflow boundary of Q.

b) Given ¢} and boundary data ¢}: solve LS~equation approximately on
QP X [tn, tat1] (we use DG FEM). Result ¢t

c) Find ¢f™* as an extension of ¢! from QF to Q1.

= an extension procedure is needed.
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Known techniques: re-initialization

e Fast marching method (FMM, [sethian, 1996])
@ PDE based: solve Eikonal equation locally



Extension techniques

Known techniques: re-initialization

e Fast marching method (FMM, (sethian, 1996])

@ PDE based: solve Eikonal equation locally

We propose another, finite element based approach:
use the Ghost penalty (GP) technique [urman et al)

GP: has several applications as stabilization technique in FEM .
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Extension techniques

Known techniques: re-initialization

e Fast marching method (FMM, (sethian, 1996])

@ PDE based: solve Eikonal equation locally

We propose another, finite element based approach:
use the Ghost penalty (GP) technique [urman et al)

GP: has several applications as stabilization technique in FEM .

We propose to use it as extension method.
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Given €, and extended domain }*.
GP faces: F,?P

w(F)=T1U T, for F e FEP

V. continuous FE of degree k.

A Ao
A=
— o

e Vy o = SP(wm) (polynomial extension).
w(F)




Ghost penalty based extension

Given € and extended domain Q§%.

GP faces: FPFP
W(F) =Ty U T, for F e FSP

V. continuous FE of degree k.

¥ € Vi i = EP()7,) (polynomial extension).

w(F)
GP bilinear form (“volumetric jump” formulation [J. Preuss 2018])
sh(¢9) =7 Y / (b1 — ¢2)(11 — ¥2) dx, for ¢, 9 € V4(Q25Y),
FeFfP

with parameter v > 0.
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(¢7 w)w = (¢7 f(:b)Lz(w)

For a given function ¢ € L2(Qy), determine ¢, € V,(Q25¥) such that
a7 (Dn, ¥n) = (Dhs Yn)eu, + Sn(Dh, Pn) = (B n)a, for all P, € Vi(Q5F




(¢7 w)w = (¢7 f(:b)Lz(w)

For a given function ¢ € L2(Qy), determine ¢, € V,(Q25¥) such that
a7 (Dn, ¥n) = (Dhs Yn)eu, + Sn(Dh, Pn) = (B n)a, for all P, € Vi(Q5F




Ghost penalty based extension

(¢a ¢)w = (¢7 w)LQ(w)

GP extension bilinear form
For a given function ¢ € L2(Q), determine ¢p, € V,(Q5¥) such that

a7 (o, ¥n) == (dny ), + Sn(Phs Yn) = (@, ¥n)q, for all py € Vi (5

-3 - 0,

Note: instead of (én,¥n)q, also (&n, ¥n)H1(q,) can be used.
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Assumption: Qp, may be of width ~ h;  Q¢*\ Q4 must be of width ~ h.
We assume a ¢ € H*t1(Q$¥), and ¢ ~ ¢ on Q.



Assumption: Qp, may be of width ~ h;  Q¢*\ Q4 must be of width ~ h.
We assume a ¢ € H*t1(Q$¥), and ¢ ~ ¢ on Q.

[nl|dex < ¢ af“(n,vn) for all 4 € VA(25Y)




Assumption: Qp, may be of width ~ h;  Q¢*\ Q4 must be of width ~ h.
We assume a ¢ € H*t1(Q$¥), and ¢ ~ ¢ on Q.

[nl|dex < ¢ af“(n,vn) for all 4 € VA(25Y)

Let ¢p € Vi(2§¥) the solution of extension problem with data be L2(Q2p).

l6 — ¢nllagx < c(llé — dlla, + H M|l pwerar))




Error analysis

Assumption: Qp, may be of width ~ h;  Q¢*\ Q4 must be of width ~ h.
We assume a ¢ € HKt1(Q5¥), and ¢ ~ ¢ on Q.

Stability and error bounds
[nllEex < € aF(¥n, o) forall by € Va(QF)

Let ¢p € V,(Q5¥) the solution of extension problem with data ¢ € L?(Qp).

l¢ = enllagx < c(lle — dlla, + M6l e ase))

@ General numerical extension operator

@ Optimal error bound

@ Still open: error bound for whole narrow band discretization method
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“Kite" level set function ¢(x) = (x1 — x5)? + x3 + x5 — 1. Zero level:




Numerical experiment for extension method

“Kite" level set function ¢(x) = (x1 — x5)? + x3 + x5 — 1. Zero level:

Tr: tetrahedra cut by I, (zero level)
Qp = N(N(Tr))
Q8 = N (N (1)) (two additional layers)

¢ := (In®)q, (input for extension problem)
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Error measures:
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k=4 ¢p=0.
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Numerical experiment for narrow band level set method

Kite to sphere level set function ¢(x, t).
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Numerical experiment for narrow band level set method

Kite to sphere level set function ¢(x, t).

On QF X [tn, th41]:
Inflow boundary data: (¢})boundary

Spatial discretization: DG FEM, degree k = 1.
Time discretization: BDF2, At ~ h.
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Numerical experiment for narrow band level set method

Kite to sphere level set function ¢(x, t).

On QF X [tn, th41]:
Inflow boundary data: (¢})boundary

Spatial discretization: DG FEM, degree k = 1.
Time discretization: BDF2, At ~ h.

In extension: k =1
Qproj := smallest set of T that contains |¢7] < h.

ext .__ n+1
Qoxt .= Qn+,
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Error measures:
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Error measures:

N 1d(s ta)7 b— o
=Nty ——t, (egut) _ At Zw

= |1 ]2
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For (close to) singular or nonsmooth geometries:
combination with robust re-initialization techniques.
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Summarizing

@ New extension method based on Ghost penalty technique

Suitable for combination with FE discretization methods

@ Error analysis is available. Higher order straightforward.

@ Used as component in narrow band level set method

Reference: preprint soon available in arXiv
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