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Introduction

» Main topic: Analysis on motion of hyper-surtace
generating contact angles on a “barrier” hyper-surface

» (Example of) physical backgrounds: = moving surface

(i) Interface dynamics g
(ii)) Capillary problem S 0
(Effect Of surface t@l’lSiOﬂ) barrier surface

Ex of (i): « (Mean) curvature flow : V =k on ~(¢)
(introduced to describe the motion of grain boundary
in annealing by Mullins ’57)
v(0) =

V' : normal velocity
Kk . curvature

n = 1 : dimension of curve (surface)
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Introduction

» Main topic: Analysis on motion of hyper-surtace
generating contact angles on a “barrier” hyper-surface

» (Example of) physical backgrounds: = moving surface
(i) Interface dynamics
(ii)) Capillary problem ‘
(Effect of surface tension) barrier surface

Ex of (i): « (Mean) curvature flow : V =k on ~(¢)

- Anisotropic (mean) curvature flow :
V =Ky on 7(t)
(¢ : surface energy density depending on normal velocity )
» Curve (surface) diffusion : V = —9%x on ~(t)
(s : arclength)



Introduction

» Main topic: Analysis on motion of hyper-surtace
generating contact angles on a “barrier” hyper-surface

» (Example of) physical backgrounds: = moving surface
(i) Interface dynamics
(ii) Capillary problem ‘
Movies for (ii): (Effect of surface tension) barrier surface
from “ZRMHAIIR ] O F” by de Gennes etc.
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Introduction

» Main topic: Analysis on motion of hyper-surtace
generating contact angles on a “barrier” hyper-surface

» (Example of) physical backgrounds: = moving surface
(i) Interface dynamics
(ii)) Capillary problem QL 0
(Effect of surface tension) barrier surface

Motivation:

» Can we describe the driving force effect
due to surface tension in mathematical model?

» Can we find new structure or behavior in
some “imaginary’ or “limiting” situations?
(We will discuss tangentially contact case)



Introduction
Known results for capillary model

» Mean curvature flow (n > 2,0 = 7))
Huisken ’89 v(t) = graphu(-, t)
» 2 C R"™: bounded domain

»u: 2 x[0,00) > R
: unknown function for
graphu(-,t) moves by MCF
graphu(-,t) 1L 092 x R

+ Energy structure: surface area decreases

+ Maximum principle: sup |u(z,t)| < sup |u(zx,0)]
xel x el




Introduction
Known results for capillary model

 Mean curvature flow (n > 2,0 = %)
Huisken '89 v(t) = graphu(-, t)
» 2 C R™: bounded domain
yu:Qx[0,00) >R o
: unknown function for
graphu(-,t) moves by MCF
graphu(-,t) 1L 092 x R

+ Energy structure: surface area decreases

+ Maximum principle: sup |u(z,t)| < sup |u(zx,0)]
xel x el

Results: u(-,0) € C*“ = Jlu: global-in-time smooth sol.
and 1t converges to constant as ¢ — oo



Introduction

» Capillary rise model (curvature flow type n = 1)
(I = (=0b,b) : interval, g € C*°(R;(0,0)), 8+ € (0,7) : constants)

Up = 113352 in I x (0, 00)
Uz (£b,t) = £tan(5 —0+) for ¢ >0

u(z,0) = ug(x) for x €1
9_ . - 9
+ Energy structure: N

E(u(-,t)) := [ /1+u2 dz y = u(-,1)
+u(b,t)cos Oy + u(—b,t)cosf_ h
decreases

<0, 0,.40_<m

d
u:ﬁX—‘fdhE(U—l—h):COSH+—I—COS(9_ =0, 0L +0_=m
> O, 6)_|_ +0_ >




Introduction
- Capillary rise model (n = 1)
(I = (=0b,b) : interval, g € C*°(R;(0,0)), 8+ € (0,7) : constants)

Ut = §(Ug ) Uzpy in I x (0,00)

tan(5 —04) fort > 0,

u(z,0) = ug(x) forx € I
: : : : 0_ 1 -
Typical examples of differential equation \/\/ 0+

» Graph of © 1s a solution to V' = &

u 1 I U(.yt)
= Ut = 73,2 (9(s) = 1+s2) —b b
» Graph of u 1s a solution to V' = k4 3R SR
— U = (&plpl ((_uxv 1)T)\/1 + u%) Uz (&(Aﬁ) = >‘¢(ﬁ)>

» Heat equation (which is not geometric flow)
Ut = Uz (9(s) = 1)



Introduction

- Capillary rise model (n = 1)
(I = (=b,b) : interval, g € C°°(R;(0,00)), 8+ € (0,7) : constants)
in I x (0,00)

ua;(::b, t) = tan(% — 6’:) for t > 0,

u(z,0) = ug(x) forx € I
Altschuler-Wu "93: 0- \/\/ 0
v +
e ug € C° (I) =

Ju : global-in-time (unique) smooth sol. y = u(-, 1)

S
|
=
<
S
~
S
5

» Ast — oo, it converges exponentially fast —b b
to a traveling wave solution v(z,t) = w(x) + ¢t with

<7 > ()
0, +0_<=m ) <= c:constant { =0
> T < 0



Introduction

- Capillary rise model (n = 1)

(I = (=b,b) : interval, g € C°(R;(0,00)), 6
in I x (0,00)

5 —0+) fort >0,

+ tan(
u(z,0) = up(x)

forx € 1

 General dimensions and equations y =

MCF:(n = 2) Altschuler-Wu ’94, (n > 2) Guan "96

General eq.: (n > 1) Barles-Da Lio "05, Da Lio 08

» Periodic angle conditions (equation is also generalized)

(n=1, 6-

(t,u) € (0,7) : 6-

(t4+T,u) = 0-

- € (0,7) : constants)

—— Generalizations (asymptotic analysis)

u(-, 1)

(2, u))

Brunovsky-Polacik '92: convergence to periodic sol.
Cai-Lou '11: convergence to periodic traveling wave



Introduction
- Capillary rise model (n = 1)
(I = (=0b,b) : interval, g € C*°(R;(0,0)), 8+ € (0,7) : constants)

Ut = §(Ug ) Uzpy in I x (0,00)

tan(5 —04) fort > 0,

u(z,0) = up(z) forx el
o | .
—— Generalizations (asymptotic analysis) \/\/ 0+

» General dimensions and equations y = u(-, 1)
MCF:(n = 2) Altschuler-Wu ’94, (n > 2) Guan "96

General eq.: (n > 1) Barles-Da Lio "05, Da Lio 08

Question: If 6. = 0, are the solution and traveling wave
bounded? (including when finite time)

—— Answer: It depends on differential equation
(in particular, only on ¢)



Introduction

ct. Lasry-Lions

(’89) (A C R™, n>1)

—Au + %\Vu|p+eu = f in ()

(Under a suitable condition of f )
e p>2=3luc C(Q)NC*Q)

1l <p<2=

solution satisfying (Vu,v) = oo on 90}

(graphu tangentially contact to cylinder domain)
Jlu € C*(Q)

solution satistying u(z) = oo on 0f)

Question: If 6.

- = 0, are the solution and traveling wave
bounded? (including when finite time)

—— Answer: It depends on differential equation

(in particular, only on ¢)



Problem (tangentially contact angle condition)
I = (—0b,b) : interval

ur = f(g(uy)Ugy) in I x (0, 00) w
(P): § limy_4puy(x,t) = £oo for £ >0

u(x,0) = ug(x) for z €1
(A1) » f € C(R): increase « f(0) =0 -+ f(+oo) = to0
(A2) » g € C(R;(0,00))

e Joy € R’ ElC__ > () S.t. hm | |ag(8) — C—:(g(ua:) ~ ‘ux‘_a)

S— T -

Typical examples of dlfferentlal equation
* f(S) = S = Ut = g(uaz)umx (aS above)
» Graph of u is a solution to V = ||’ "'k (B> 0)

=1 . f(s)=|s”"'s
(1+u2)35251 g(s) = 135_—1

—= Ut = | C1335 1
(14u2) 28




Boundedness of TW

as |s| — +00)

Boundedness of traveling wave
(v(z,t) = w(z) +ct, w € C*(I), c €R)

e f71(c) = g(wy)ws, : Equation of w(z)

e Assume o > 1, wi(z) ~ (b—x)"(v < 0)around z = b

0, Y > ail
b'dd, > —1 v b )
unb’dd, ~v < -1 1
0, v <




Boundedness of TW

Boundedness of traveling wave
(v(z,t) = w(z) +ct, w € C*(I), c €R)

e f71(c) = g(wy)ws, : Equation of w(z)

e Assume o > 1, wi(z) ~ (b—x)"(v < 0)around z = b

00, > o
{b’dd, v > -1 v b !

= W : g(Wg )Wz — < const, ~ =
unb’dd, v < —1

0, v <

» o o> 2 = w 1s bounded
(u should be bounded and converge to TW as t — o0o)

e 1 < a< 2= w is unbounded
(u should diverges at least t = oo. How about finite time?)

“Instantaneous” blow-up occurs on the boundary (a < 2)



Main results

Thml (K. L1u 21) aa > 2 =

. unique up to vertical translation

Jw € Co—1 (1) N C*(1),Fle > 0 s.t. w(z) + ct 2 sol. to (P)
« ug € C(I) :>EI'V15(:051ty sol. u € C(I x [0,00)) to (P)

. ug € C(I) is convex, ¢ is Lipschitz,

f~'is Lipschitz away from s = 0
= da € R s.t. ||u(-,t) — (w+ct+ a)||p~ — 0

(Existence of sol. can be proved by applying
Perron’s method)



Main results

Thml (K. L1u 21) aa > 2 =

. unique up to vertical translation

Jw € Co—1 (1) N C*(1),Fle > 0 s.t. w(z) + ct 2 sol. to (P)
« ug € C(I) :>EI'V15(:051ty sol. u € C(I x [0,00)) to (P)

. ug € C(I) is convex, ¢ is Lipschitz,

f~'is Lipschitz away from s = 0
= da € R s.t. ||u(-,t) — (w+ct+ a)||p~ — 0
Thm?2 (K.-Liu, ’21)
o < 2= A(b’dd) viscosity sol. u € C(I x [0,00)) to (P)
We can prove
Ju € C(I x [0,00)) : sol. to (P) = u(%b,t) = oo (t > 0)
by constructing a sequence of sub-solutions




Main results

Thml (K. L1u 21) aa > 2 =

. unique up to vertical translation

Jw € Co=1 (1) N C2(1), e > 0 s.t. w(x) +ct : sol. to (P)
« ug € C(I) :>EI'Vlscos1ty sol. u € C(I x [0,00)) to (P)

Thm?2 (K.-Liu, ’21)

o < 2= A(b’dd) viscosity sol. u € C(I x [0,00)) to (P)
We can prove

Ju € C(I x [0,00)) : sol. to (P) = u(%b,t) = oo (t > 0)
by constructing a sequence of sub-solutions

Remind (8 > 0)
Graph type sol. of 3 < 1= Thml can be applied
— |k|? 1k (o = 2271)" B> 1 = Thm2 can be applied




Future works
+ Higher dimension case

- Singular Dirichlet problem

»1 < o <2 = Unbounded traveling wave exists
—— Unbounded solution should exist and converges to TW

» & < 1 = There 1s no traveling wave

— (conjecture) Blow-up region may expand from
the end points

» Tangentially contact angle condition for geometric flow
with general barrier surface

v(1)

barrier surface



Future works
+ Higher dimension case

- Singular Dirichlet problem

»1 < o <2 = Unbounded traveling wave exists
—— Unbounded solution should exist and converges to TW

» & < 1 = There 1s no traveling wave

— (conjecture) Blow-up region may expand from
the end points

» Tangentially contact angle condition for geometric flow
with general barrier surface

* What happens after moving surface ()
collide with a barrier boundary?

(It should depend on “situations” that

topological change occur or
moving surface returns to interior)



Thank you for your kind attention!



