Singular Neumann boundary problems for a class of fully nonlinear parabolic equations

Takashi Kagaya (Muroran Institute of Technology)

Joint worker: Qing Liu (Okinawa Institute of Science and Technology Graduate University)

2022/6/9

The 81st Fujihara Seminar Mathematical Aspects for Interfaces and Free Boundaries

- Main topic: Analysis on motion of hyper-surface generating contact angles on a "barrier" hyper-surface
- (Example of) physical backgrounds: moving surface
 - (i) Interface dynamics
 - (ii) Capillary problem

(Effect of surface tension) barrier surface

Ex of (i): • (Mean) curvature flow : $V = \kappa$ on $\gamma(t)$ (introduced to describe the motion of grain boundary in annealing by Mullins '57)

V: normal velocity

 κ : curvature

n=1: dimension of curve (surface)

- Main topic: Analysis on motion of hyper-surface generating contact angles on a "barrier" hyper-surface
- (Example of) physical backgrounds: moving surface
 - (i) Interface dynamics
 - (ii) Capillary problem
 (Effect of surface tension) barrier surface

Ex of (i): • (Mean) curvature flow : $V = \kappa$ on $\gamma(t)$ (introduced to describe the motion of grain boundary

- Main topic: Analysis on motion of hyper-surface generating contact angles on a "barrier" hyper-surface
- (Example of) physical backgrounds: moving surface
 - (i) Interface dynamics
 - (ii) Capillary problem
 (Effect of surface tension) barrier surface
- Ex of (i): (Mean) curvature flow : $V = \kappa$ on $\gamma(t)$
 - Anisotropic (mean) curvature flow:

$$V = \kappa_{\phi}$$
 on $\gamma(t)$

- $(\phi : \text{surface energy density depending on normal velocity } \vec{\nu})$
 - Curve (surface) diffusion : $V = -\partial_s^2 \kappa$ on $\gamma(t)$ (s: arclength)

• Main topic: Analysis on motion of hyper-surface generating contact angles on a "barrier" hyper-surface

• (Example of) physical backgrounds: moving surface

- (i) Interface dynamics
- (ii) Capillary problem

Movies for (ii): (Effect of surface tension) barrier surface

- Main topic: Analysis on motion of hyper-surface generating contact angles on a "barrier" hyper-surface
- (Example of) physical backgrounds: moving surface
 - (i) Interface dynamics
 - (ii) Capillary problem

(Effect of surface tension) barrier surface

Motivation:

- Can we describe the driving force effect due to surface tension in mathematical model?
- Can we find new structure or behavior in some "imaginary" or "limiting" situations?
 (We will discuss tangentially contact case)

Known results for capillary model

• Mean curvature flow $(n \ge 2, \theta = \frac{\pi}{2})$

Huisken '89

- $\bullet \Omega \subset \mathbb{R}^n$: bounded domain
- $u: \Omega \times [0, \infty) \to \mathbb{R}$

: unknown function for

$$\begin{cases} \operatorname{graph} u(\cdot, t) \text{ moves by MCF} \\ \operatorname{graph} u(\cdot, t) \perp \partial \Omega \times \mathbb{R} \end{cases}$$

- ◆ Energy structure: surface area decreases
- ♦ Maximum principle: $\sup_{x \in Ω} |u(x,t)| \le \sup_{x \in Ω} |u(x,0)|$

Known results for capillary model

• Mean curvature flow $(n \ge 2, \theta = \frac{\pi}{2})$

Huisken '89

- $\bullet \Omega \subset \mathbb{R}^n$: bounded domain
- $u: \Omega \times [0, \infty) \to \mathbb{R}$

: unknown function for

$$\begin{cases} \operatorname{graph} u(\cdot, t) \text{ moves by MCF} \\ \operatorname{graph} u(\cdot, t) \perp \partial \Omega \times \mathbb{R} \end{cases}$$

- ◆ Energy structure: surface area decreases
- ♦ Maximum principle: $\sup_{x \in Ω} |u(x,t)| \le \sup_{x \in Ω} |u(x,0)|$

Results: $u(\cdot,0) \in C^{2,\alpha} \Rightarrow \exists ! u$: global-in-time smooth sol. and it converges to constant as $t \to \infty$

• Capillary rise model (curvature flow type n = 1)

$$(I = (-b, b) : \text{interval}, \ g \in C^{\infty}(\mathbb{R}; (0, \infty)), \ \theta_{\pm} \in (0, \pi) : \text{constants})$$

$$\begin{cases} u_t = \frac{u_{xx}}{1 + u_x^2} & \text{in } I \times (0, \infty) \\ u_x(\pm b, t) = \pm \tan(\frac{\pi}{2} - \theta_{\pm}) & \text{for } t > 0 \\ u(x, 0) = u_0(x) & \text{for } x \in \overline{I} \end{cases}$$

♦ Energy structure:

$$E(u(\cdot,t)) := \int \sqrt{1 + u_x^2} dx$$

+ $u(b,t) \cos \theta_+ + u(-b,t) \cos \theta_-$

 $\theta_{-} = \frac{1}{y} = u(\cdot, t)$ -b θ_{+}

decreases

$$u: \text{fix} \Rightarrow \frac{d}{dh} E(u+h) = \cos \theta_{+} + \cos \theta_{-} \begin{cases} < 0, & \theta_{+} + \theta_{-} < \pi \\ = 0, & \theta_{+} + \theta_{-} = \pi \\ > 0, & \theta_{+} + \theta_{-} > \pi \end{cases}$$

• Capillary rise model (n = 1)

$$(I = (-b, b) : \text{interval}, \ g \in C^{\infty}(\mathbb{R}; (0, \infty)), \ \theta_{\pm} \in (0, \pi) : \text{constants})$$

$$\begin{cases} u_t = g(u_x)u_{xx} & \text{in } I \times (0, \infty) \\ u_x(\pm b, t) = \pm \tan(\frac{\pi}{2} - \theta_{\pm}) & \text{for } t > 0, \\ u(x, 0) = u_0(x) & \text{for } x \in \overline{I} \end{cases}$$

Typical examples of differential equation

- Graph of u is a solution to $V = \kappa$ $\Rightarrow u_t = \frac{u_{xx}}{1+u_x^2} \quad (g(s) = \frac{1}{1+s^2})$
- Graph of u is a solution to $V = \kappa_{\phi}$ $\Rightarrow u_{t} = \left(\tilde{\phi}_{p_{1}p_{1}}((-u_{x}, 1)^{T})\sqrt{1 + u_{x}^{2}}\right)u_{xx} \quad \begin{pmatrix} \tilde{\phi} : \mathbb{R}^{2} \to \mathbb{R} \\ \tilde{\phi}(\lambda \vec{\nu}) := \lambda \phi(\vec{\nu}) \end{pmatrix}$
- $\begin{array}{c|c}
 \theta_{-} & & \\
 y = u(\cdot, t) \\
 -b & b
 \end{array}$ $\begin{pmatrix}
 \tilde{\phi} : \mathbb{R}^2 \to \mathbb{R} \\
 \tilde{\phi} : \tilde{\phi} : \tilde{\phi} : \tilde{\phi} : \tilde{\phi}
 \end{pmatrix}$
- Heat equation (which is not geometric flow) $u_t = u_{xx} \quad (g(s) = 1)$

• Capillary rise model (n = 1)

$$(I = (-b, b) : \text{interval}, \ g \in C^{\infty}(\mathbb{R}; (0, \infty)), \ \theta_{\pm} \in (0, \pi) : \text{constants})$$

$$\begin{cases} u_t = g(u_x)u_{xx} & \text{in } I \times (0, \infty) \\ u_x(\pm b, t) = \pm \tan(\frac{\pi}{2} - \theta_{\pm}) & \text{for } t > 0, \\ u(x, 0) = u_0(x) & \text{for } x \in \overline{I} \end{cases}$$

Altschuler-Wu '93:

• $u_0 \in C^{\infty}(\overline{I}) \Rightarrow$ $\exists u : \text{global-in-time (unique) smooth sol.}$ $y = u(\cdot, t)$

$$\theta_{+} + \theta_{-} \begin{cases} < \pi \\ = \pi \\ > \pi \end{cases} \iff c : constant \begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$$

• Capillary rise model (n = 1)

$$(I = (-b, b) : \text{interval}, \ g \in C^{\infty}(\mathbb{R}; (0, \infty)), \ \theta_{\pm} \in (0, \pi) : \text{constants})$$

$$\begin{cases} u_t = g(u_x)u_{xx} & \text{in } I \times (0, \infty) \\ u_x(\pm b, t) = \pm \tan(\frac{\pi}{2} - \theta_{\pm}) & \text{for } t > 0, \\ u(x, 0) = u_0(x) & \text{for } x \in \overline{I} \end{cases}$$

- Generalizations (asymptotic analysis)
- General dimensions and equations

MCF: (n = 2) Altschuler-Wu '94, $(n \ge 2)$ Guan '96

General eq.: $(n \ge 1)$ Barles-Da Lio '05, Da Lio '08

• Periodic angle conditions (equation is also generalized)

$$(n = 1, \ \theta_{\pm}(t, u) \in (0, \pi) : \theta_{\pm}(t + T, u) = \theta_{\pm}(t, u))$$

Brunovský-Poláčik '92: convergence to periodic sol. Cai-Lou '11: convergence to periodic traveling wave

• Capillary rise model (n = 1)

$$(I = (-b, b) : \text{interval}, \ g \in C^{\infty}(\mathbb{R}; (0, \infty)), \ \theta_{\pm} \in (0, \pi) : \text{constants})$$

$$\begin{cases} u_t = g(u_x)u_{xx} & \text{in } I \times (0, \infty) \\ u_x(\pm b, t) = \pm \tan(\frac{\pi}{2} - \theta_{\pm}) & \text{for } t > 0, \\ u(x, 0) = u_0(x) & \text{for } x \in \overline{I} \end{cases}$$

- Generalizations (asymptotic analysis)
- General dimensions and equations

MCF: (n=2) Altschuler-Wu '94, $(n\geq 2)$ Guan '96

General eq.: $(n \ge 1)$ Barles-Da Lio '05, Da Lio '08

Question: If $\theta_{\pm} = 0$, are the solution and traveling wave bounded? (including when finite time)

Answer: It depends on differential equation (in particular, only on g)

cf. Lasry-Lions ('89)
$$(\Omega \subset \mathbb{R}^n, n \ge 1)$$

 $-\Delta u + \frac{1}{p} |\nabla u|^p + \varepsilon u = f \text{ in } \Omega$

(Under a suitable condition of f)

•
$$p>2\Rightarrow \exists!u\in C(\overline{\Omega})\cap C^2(\Omega)$$
 solution satisfying $\langle\nabla u,\nu\rangle=\infty$ on $\partial\Omega$

(graphu tangentially contact to cylinder domain)

•
$$1 solution satisfying $u(x) = \infty$ on $\partial \Omega$$$

Question: If $\theta_{\pm} = 0$, are the solution and traveling wave bounded? (including when finite time)

Answer: It depends on differential equation (in particular, only on g)

Problem (tangentially contact angle condition)

$$I = (-b, b)$$
: interval

$$I = (-b, b) : interval$$

$$\begin{cases} u_t = f(g(u_x)u_{xx}) & \text{in } I \times (0, \infty) \\ \lim_{x \to \pm b} u_x(x, t) = \pm \infty & \text{for } t > 0 \\ u(x, 0) = u_0(x) & \text{for } x \in \overline{I} \end{cases}$$

$$(A.1) : f \in C(\mathbb{R}) : increase = f(0) = 0 : f(\pm \infty) = \pm \infty$$

(A1) •
$$f \in C(\mathbb{R})$$
: increase • $f(0) = 0$ • $f(\pm \infty) = \pm \infty$

$$(A2) \cdot g \in C(\mathbb{R}; (0, \infty))$$

•
$$\exists \alpha \in \mathbb{R}, \exists C_{\pm} > 0 \text{ s.t. } \lim_{s \to \pm \infty} |s|^{\alpha} g(s) = C_{\pm}(g(u_x) \approx |u_x|^{-\alpha})$$

Typical examples of differential equation

- $f(s) = s \Rightarrow u_t = g(u_x)u_{xx}$ (as above)
- Graph of u is a solution to $V = |\kappa|^{\beta-1} \kappa \quad (\beta > 0)$

$$\Rightarrow u_t = \left| \frac{u_{xx}}{(1+u_x^2)^{\frac{3\beta-1}{2\beta}}} \right|^{\beta-1} \frac{u_{xx}}{(1+u_x^2)^{\frac{3\beta-1}{2\beta}}} \quad \begin{pmatrix} f(s) = |s|^{\beta-1}s \\ g(s) = \frac{1}{(1+s^2)^{\frac{3\beta-1}{2\beta}}} \end{pmatrix}$$

Boundedness of TW

(P): (Eq)
$$u_t = f(g(u_x)u_{xx})$$

$$\begin{cases} (g(s) \approx |s|^{-\alpha} \\ \text{as } |s| \to \pm \infty) \end{cases} (BC) u_x(\pm b, t) = \pm \infty$$

Boundedness of traveling wave

$$(v(x,t) = w(x) + ct, \ w \in C^2(I), \ c \in \mathbb{R})$$

- $f^{-1}(c) = g(w_x)w_{xx}$: Equation of w(x)
- Assume $\alpha > 1$, $w_x(x) \approx (b-x)^{\gamma} (\gamma < 0)$ around x = b

$$\Rightarrow w: \begin{cases} \text{b'dd}, & \gamma > -1\\ \text{unb'dd}, & \gamma \leq -1 \end{cases} \qquad g(w_x)w_{xx} \stackrel{x \to b}{\to} \begin{cases} \infty, & \gamma > -\frac{1}{\alpha - 1}\\ \text{const}, & \gamma = -\frac{1}{\alpha - 1}\\ 0, & \gamma < -\frac{1}{\alpha - 1} \end{cases}$$

Boundedness of TW

(P): (Eq)
$$u_t = f(g(u_x)u_{xx})$$

$$\begin{cases} g(s) \approx |s|^{-\alpha} \\ \text{as } |s| \to \pm \infty \end{cases}$$
 (BC) $u_x(\pm b, t) = \pm \infty$

Boundedness of traveling wave

$$(v(x,t) = w(x) + ct, \ w \in C^2(I), \ c \in \mathbb{R})$$

- $f^{-1}(c) = g(w_x)w_{xx}$: Equation of w(x)
- Assume $\alpha > 1$, $w_x(x) \approx (b-x)^{\gamma} (\gamma < 0)$ around x = b

$$\Rightarrow w: \begin{cases} \text{b'dd}, & \gamma > -1\\ \text{unb'dd}, & \gamma \leq -1 \end{cases} \qquad g(w_x)w_{xx} \stackrel{x \to b}{\to} \begin{cases} \infty, & \gamma > -\frac{1}{\alpha - 1}\\ \text{const}, & \gamma = -\frac{1}{\alpha - 1}\\ 0, & \gamma < -\frac{1}{\alpha - 1} \end{cases}$$

 \longrightarrow $\alpha > 2 \Rightarrow w$ is bounded

(u should be bounded and converge to TW as $t \to \infty$)

- $1 < \alpha \le 2 \Rightarrow w$ is unbounded
- (u should diverges at least $t = \infty$. How about finite time?)
- "Instantaneous" blow-up occurs on the boundary ($\alpha \le 2$)

Main results

(P): (Eq)
$$u_t = f(g(u_x)u_{xx})$$

$$\begin{cases} g(s) \approx |s|^{-\alpha} \\ \text{as } |s| \to \pm \infty \end{cases}$$
 (BC) $u_x(\pm b, t) = \pm \infty$

- Thm1 (K.-Liu, '21) $\alpha > 2 \Rightarrow$ unique up to vertical translation $\exists w \in C^{\frac{\alpha-2}{\alpha-1}}(\overline{I}) \cap C^2(I), \exists !c > 0 \text{ s.t. } w(x) + ct : \text{sol. to } (P)$
 - $u_0 \in C(\overline{I}) \Rightarrow \exists!$ viscosity sol. $u \in C(\overline{I} \times [0, \infty))$ to (P)
 - $u_0 \in C(I)$ is convex, g is Lipschitz, f^{-1} is Lipschitz away from s = 0 $\Rightarrow \exists a \in \mathbb{R} \text{ s.t. } \|u(\cdot,t)-(w+ct+a)\|_{L^{\infty}} \to 0$

(Existence of sol. can be proved by applying

Perron's method)

Main results

(P): (Eq)
$$u_t = f(g(u_x)u_{xx})$$

$$\begin{cases} g(s) \approx |s|^{-\alpha} \\ \text{as } |s| \to \pm \infty \end{cases}$$
 (BC) $u_x(\pm b, t) = \pm \infty$

- Thm1 (K.-Liu, '21) $\alpha > 2 \Rightarrow$ unique up to vertical translation • $\exists w \in C^{\frac{\alpha-2}{\alpha-1}}(\overline{I}) \cap C^2(I), \exists !c>0 \text{ s.t. } w(x)+ct: \text{ sol. to } (\mathrm{P})$
 - $u_0 \in C(\overline{I}) \Rightarrow \exists!$ viscosity sol. $u \in C(\overline{I} \times [0, \infty))$ to (P)
 - $u_0 \in C(\overline{I})$ is convex, g is Lipschitz, f^{-1} is Lipschitz away from s=0 $\Rightarrow \exists a \in \mathbb{R} \text{ s.t. } \|u(\cdot,t)-(w+ct+a)\|_{L^{\infty}} \to 0$

Thm2 (K.-Liu, '21)

 $\alpha \leq 2 \Rightarrow \exists \text{ (b'dd) viscosity sol. } u \in C(\overline{I} \times [0, \infty)) \text{ to (P)}$

We can prove

$$\exists u \in C(\overline{I} \times [0, \infty)) : \text{sol. to } (P) \Rightarrow u(\pm b, t) = \infty \ (t > 0)$$

by constructing a sequence of sub-solutions

Main results

(P): (Eq)
$$u_t = f(g(u_x)u_{xx})$$

$$\begin{cases} g(s) \approx |s|^{-\alpha} \\ \text{as } |s| \to \pm \infty \end{cases}$$
 (BC) $u_x(\pm b, t) = \pm \infty$

- Thm1 (K.-Liu, '21) $\alpha > 2 \Rightarrow$ unique up to vertical translation $\exists w \in C^{\frac{\alpha-2}{\alpha-1}}(\overline{I}) \cap C^2(I), \exists !c > 0 \text{ s.t. } w(x) + ct : \text{sol. to } (P)$
 - $u_0 \in C(\overline{I}) \Rightarrow \exists!$ viscosity sol. $u \in C(\overline{I} \times [0, \infty))$ to (P)

Thm2 (K.-Liu, '21)

$$\alpha \leq 2 \Rightarrow \exists \text{ (b'dd) viscosity sol. } u \in C(\overline{I} \times [0, \infty)) \text{ to (P)}$$

/We can prove

$$\exists u \in C(\overline{I} \times [0, \infty)) : \text{sol. to } (P) \Rightarrow u(\pm b, t) = \infty \ (t > 0)$$

by constructing a sequence of sub-solutions

Remind $(\beta > 0)$

• Graph type sol. of $\beta \leq 1 \Rightarrow \text{Thm 1}$ can be applied $V = |\kappa|^{\beta-1} \kappa \ (\alpha = \frac{3\beta-1}{\beta})^{\frac{1}{\beta}} \beta > 1 \Rightarrow \text{Thm 2}$ can be applied

Future works

- Higher dimension case
- Singular Dirichlet problem
 - $1 < \alpha \le 2 \Rightarrow$ Unbounded traveling wave exists
 - Unbounded solution should exist and converges to TW
 - $\alpha \le 1 \Rightarrow$ There is no traveling wave
 - (conjecture) Blow-up region may expand from the end points
- Tangentially contact angle condition for geometric flow with general barrier surface

Future works

- Higher dimension case
- Singular Dirichlet problem
 - $1 < \alpha \le 2 \Rightarrow$ Unbounded traveling wave exists
 - Unbounded solution should exist and converges to TW
 - $\alpha \leq 1 \Rightarrow$ There is no traveling wave
 - (conjecture) Blow-up region may expand from the end points
- Tangentially contact angle condition for geometric flow with general barrier surface
- What happens after moving surface collide with a barrier boundary?
- (It should depend on "situations" that topological change occur or moving surface returns to interior)

Thank you for your kind attention!