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Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces
among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.
glucose)
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Diffuse interfaces
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Advantages of diffuse interfaces in tumor growth models

It eliminates the need to enforce complicated boundary conditions across the
tumor/host tissue and other species/species interfaces

It eliminates the need to explicitly track the position of interfaces, as is required in
the sharp interface framework

The mathematical description remains valid even when the tumor undergoes
toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

Ciarletta, Cristini, Frieboes, Garcke, Hawkins, Hilhorst, Lam, Lowengrub, Oden,
Wise, also for their numerical simulations → complex changes in tumor
morphologies due to the interactions with nutrients or toxic agents and also due to
mechanical stresses

Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Nürnberg, Sitka, for
the interaction of multiple tumor cell species described by multiphase mixture models
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The variables and physical features

Basic variables
I ϕ ∈ [−1, 1]: local proportion (phase field) of tumor cells,
I σ ≥ 0: concentration of a chemical substance (nutrient or drug) affecting the tumor

evolution,
I µ: chemical potential of the phase separation process.

Physical effects and main model features:
I presence of a mass source: the tumor may grow, or shrink, depending on the effect of

nutrient availability;
I presence, also, of a nutrient source;
I consumption of the nutrient by means of tumor cells;
I active transport: the nutrient tends to migrate, somehow “attracted” by tumor cells;
I presence of non-constant mobility coefficients; singular potential of Flory-Huggins type.
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The model equations

ϕt − div
(
m(ϕ, σ)∇µ

)
= S(ϕ, σ), (CH1)

µ = −∆ϕ+ f (ϕ)− χσ, (CH2)

σt − div
(
σn(ϕ, σ)∇(lnσ + χ(1− ϕ))

)
= b(ϕ, σ). (nutr)

In smooth bounded Ω ⊂ Rd , d ∈ {2, 3}. No-flux b.c. for all variables.

Possibly nonconstant, but smooth and bounded mobility functions m(ϕ, σ), n(ϕ, σ).

Occurrence of a singular configuration potential:

f (ϕ) = F ′(ϕ) = ln
1 + ϕ

1− ϕ − λϕ, λ ≥ 0,

which, as usual, may be nonconvex.

Specific forms of the mass and nutrient sources.

Keller-Segel-like cross diffusion → we would like to represent chemotaxis, the active
movement, in a biological sense, of the tumor cells towards regions of high nutrient
concentration.
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Choice of the source terms

Mass source: in the Cahn-Hilliard type equation

ϕt − div
(
m(ϕ, σ)∇µ

)
= S(ϕ, σ)

we take
S(ϕ, σ) = −mϕ+ h(ϕ, σ),

where m > 0 is a constant. The function h is assumed bounded and Lipschitz
continuous.

Similarly to other CH-models with mass source and singular potential, m has to be
large compared to the L∞-norm of h.

If h is a constant, (CH1) reduces to the Cahn-Hilliard-Oono equation.

The case S ≡ 0 may be treated as well.
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Choice of the source terms

Nutrient source: in the nutrient equation

σt − div
(
σn(ϕ, σ)∇(lnσ + χ(1− ϕ))

)
= b(ϕ, σ).

we take a logistic nutrient source of the form

b(ϕ, σ) = β(ϕ)(κ0σ − κ∞σp), 1 < p ≤ 2,

where κ0, κ∞ > 0.

The function β is smooth, bounded and such that β(·) ≥ b0 > 0.

The “true logistic” choice p = 2 stands as a reference case.

Some mathematical results hold also for p < 2 (but close to 2) in a way depending
on the spatial dimension. Neglecting the logistic source (i.e. for b ≡ 0), blowup is
expected.
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Motivations for the KS choice (and for the logistic term)

Integrating (nutr) (constant mobility for simplicity) over a reference volume V ⊂ Ω one
obtains

d

dt

∫
V

σ =

∫
∂V

∂nσ − χ
∫
∂V

σ∂nϕ+

∫
V

β(ϕ)(κ∞σ
p − κ0σ)

If the proportion of tumor cells is higher outside V than inside V (∂nϕ > 0), then
the nutrient flows away from V proportionally to its concentration;

The Keller-Segel dynamics, moreover, guarantees preservation of the nonnegativity
of σ;

For large values of the concentration (κ∞σp > κ0σ), there is a volumic source effect
leading σ to decrease due to consumption;

In the reference case β is monotone increasing. Namely, the larger is ϕ,
I (for σ large), the faster the nutrient is consumed;
I (for σ small), the faster the nutrient tends to chemotactically move inwards V .
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Coercivity of the energy functional

The model has a variational derivation in terms of the energy

F(ϕ, σ) =

∫
Ω

(
1
2
|∇ϕ|2 + F (ϕ)

)
︸ ︷︷ ︸

=:E(ϕ)

+

∫
Ω

(
σ(lnσ − 1) + χσ(1− ϕ)

)
︸ ︷︷ ︸

=:M(ϕ,σ)

,

Cahn-Hilliard part E(ϕ): as usual, is the sum of a (diffuse) interface part and a
singular configuration part guaranteeing the constraint |ϕ| ≤ 1;

Keller-Segel / coupling partM(ϕ, σ): since |ϕ| ≤ 1 the coupling part is controlled
by the “entropic” term depending only on σ.

This feature is lost if the singular potential is regularized, or is simply replaced by a
“smooth” potential of controlled growth like F (ϕ) ∼ (ϕ2 − 1)2.
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Comparison with previous models

A vast literature has been dedicated to the case when the nutrient equation has a
form like (or generalizations of it)

σt − div
(
n(ϕ, σ)∇σ

)
+ χ div

(
n(ϕ, σ)∇ϕ

)
= b(ϕ, σ) (nutr)

Contributions by Garcke, Lam, Sitka, Styles, Ebenbeck, Knopf, Signori, Wu,
Grasselli, Colli, Gilardi, Sprekels, Schimperna, . . . . . .

For bounded mobility n the cross-diffusion term has a linear growth (compare to our
χ div

(
σn(ϕ, σ)∇ϕ

)
), giving rise to

I Advantage #1: no risk of supercritical behavior (no need for logistic behavior of
b(ϕ, σ))

I Advantage #2: no need for singular potential in (CH2) in order to guarantee energy
coercivity (recall that singular potentials are delicate to deal with in (CH)-models with
mass source)

I Drawback #1: no minimum principle for σ: interpretation as a concentration is
somehow lost

I Drawback #2: the nutrient consumption, or growth, is independent of the proportion
of tumor cells.
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Basic assumptions

(A1) Singular potential F , so normalized that F ≡ +∞ outside [−1, 1]; for example
Flory-Huggins logarithmic potential;

(A2) Mass source term S(ϕ, σ) = −mϕ+ h(ϕ, σ). The constant m > 0 is large compared
to the L∞-norm of the (smooth and bounded) function h. We basically need that
S < 0 for ϕ ∼ 1 and S > 0 for ϕ ∼ −1;

(A3) Chemical source term b(ϕ, σ) = −β(ϕ)(κ0σ − κ∞σp). The function β is also
smooth and bounded. Moreover β(·) ≥ b0 > 0 in the reference interval [−1, 1].

(A4) Mobility coefficients m(ϕ, σ),n(ϕ, σ) assumed smooth, bounded, Lipschitz
continuous, strongly positive (i.e., everywhere larger than some m0 > 0), plus some
technical assumption (for instance ∂ϕn also uniformly bounded)

E. Rocca (Pavia) Cahn-Hilliard-Keller-Segel for tumor growth June 7th, 2022 17 / 27



Basic assumptions

(A1) Singular potential F , so normalized that F ≡ +∞ outside [−1, 1]; for example
Flory-Huggins logarithmic potential;

(A2) Mass source term S(ϕ, σ) = −mϕ+ h(ϕ, σ). The constant m > 0 is large compared
to the L∞-norm of the (smooth and bounded) function h. We basically need that
S < 0 for ϕ ∼ 1 and S > 0 for ϕ ∼ −1;

(A3) Chemical source term b(ϕ, σ) = −β(ϕ)(κ0σ − κ∞σp). The function β is also
smooth and bounded. Moreover β(·) ≥ b0 > 0 in the reference interval [−1, 1].

(A4) Mobility coefficients m(ϕ, σ),n(ϕ, σ) assumed smooth, bounded, Lipschitz
continuous, strongly positive (i.e., everywhere larger than some m0 > 0), plus some
technical assumption (for instance ∂ϕn also uniformly bounded)

E. Rocca (Pavia) Cahn-Hilliard-Keller-Segel for tumor growth June 7th, 2022 17 / 27



Basic assumptions

(A1) Singular potential F , so normalized that F ≡ +∞ outside [−1, 1]; for example
Flory-Huggins logarithmic potential;

(A2) Mass source term S(ϕ, σ) = −mϕ+ h(ϕ, σ). The constant m > 0 is large compared
to the L∞-norm of the (smooth and bounded) function h. We basically need that
S < 0 for ϕ ∼ 1 and S > 0 for ϕ ∼ −1;

(A3) Chemical source term b(ϕ, σ) = −β(ϕ)(κ0σ − κ∞σp). The function β is also
smooth and bounded. Moreover β(·) ≥ b0 > 0 in the reference interval [−1, 1].

(A4) Mobility coefficients m(ϕ, σ),n(ϕ, σ) assumed smooth, bounded, Lipschitz
continuous, strongly positive (i.e., everywhere larger than some m0 > 0), plus some
technical assumption (for instance ∂ϕn also uniformly bounded)

E. Rocca (Pavia) Cahn-Hilliard-Keller-Segel for tumor growth June 7th, 2022 17 / 27



Basic assumptions

(A1) Singular potential F , so normalized that F ≡ +∞ outside [−1, 1]; for example
Flory-Huggins logarithmic potential;

(A2) Mass source term S(ϕ, σ) = −mϕ+ h(ϕ, σ). The constant m > 0 is large compared
to the L∞-norm of the (smooth and bounded) function h. We basically need that
S < 0 for ϕ ∼ 1 and S > 0 for ϕ ∼ −1;

(A3) Chemical source term b(ϕ, σ) = −β(ϕ)(κ0σ − κ∞σp). The function β is also
smooth and bounded. Moreover β(·) ≥ b0 > 0 in the reference interval [−1, 1].

(A4) Mobility coefficients m(ϕ, σ),n(ϕ, σ) assumed smooth, bounded, Lipschitz
continuous, strongly positive (i.e., everywhere larger than some m0 > 0), plus some
technical assumption (for instance ∂ϕn also uniformly bounded)

E. Rocca (Pavia) Cahn-Hilliard-Keller-Segel for tumor growth June 7th, 2022 17 / 27



Existence of weak solutions

Theorem (Rocca, Schimperna, Signori, arXiv:2202.11007, 2022)

Assume (A1)-(A4). Let χ > 0 and let d ∈ {2, 3}. Let the initial data satisfy

ϕ0 ∈ H1(Ω), F (ϕ0) ∈ L1(Ω), (ϕ0)Ω ∈ (−1, 1),

σ0 ≥ 0 a.e. in Ω, σ0 lnσ0 ∈ L1(Ω).

Assume also

p ∈ [3/2, 2] if d = 2, p ∈ [8/5, 2] if d = 3.

Then, there exists at least one weak solution in the regularity class

ϕ ∈ H1(0,T ;H1(Ω)∗) ∩ L∞(0,T ;H1(Ω)) ∩ Lp(0,T ;W 2,p(Ω)),

σ ∈ C 0([0,T ];W ∗) ∩ L∞(0,T ; L1(Ω)),

− 1 ≤ ϕ(·, ·) ≤ 1, σ(·, ·) ≥ 0,

µ ∈ L2(0,T ;H1(Ω)),

F (ϕ) ∈ L∞(0,T ; L1(Ω)), f (ϕ)(= F ′(ϕ)) ∈ Lp((0,T )× Ω).
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Additional regularity

Theorem (Rocca, Schimperna, Signori, arXiv:2202.11007, 2022)

Assume, in addition,

σ0 ∈ L2(Ω), p = 2,

if d = 3, n ≡ 1 and χ < (2κ∞b0)1/2,

Then, the regularity of weak solutions is improved (for d = 3) up to

ϕ ∈ H1(0,T ;H1(Ω)∗) ∩ L4(0,T ;H2(Ω)) ∩ L2(0,T ;W 2,6(Ω)),

σ ∈ H1(0,T ;H1(Ω)∗) ∩ C 0([0,T ]; L2(Ω)) ∩ L2(0,T ;H1(Ω)),

In the true-logistic case and for constant mobilities m ≡ n ≡ 1 we have additional
regularity results (including ”separation property" for d = 2).
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Uniqueness

Theorem (Rocca, Schimperna, Signori, arXiv:2202.11007, 2022)

Assume, in addition,

m ≡ n ≡ 1, p = 2, β ≡ 1

Given two weak solutions (ϕ1, µ1, σ1) and (ϕ2, µ2, σ2) originating from the same initial
data and additionally satisfying (d = 3)

ϕ1 ∈ L2(0,T ;W 2,6(Ω)),

σ1 ∈ L4(0,T ; L2(Ω)),

σ2 ∈ L4(0,T ; L6(Ω)).

Then (ϕ1, µ1, σ1) ≡ (ϕ2, µ2, σ2) provided that

either h is a constant,

or F ′′(ϕ1),F ′′(ϕ2) ∈ L2((0,T )× Ω).
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Perspectives for the Analysis and the Applications

to study the optimal control and long-time behavior with different proliferating
terms or different potentials (cf. Lennard Johns potential)

to include mechanics (large deformations) in the model (joint project with Abramo
Agosti, Pierluigi Colli, and Harald Garcke)

to investigate different optimal control problems (sliding modes) so that the
trajectory reaches a desired state in finite time and stays there till time T

to give hints to the medical doctor about the therapy using simulations - for
glioblastoma multiforme - in collaboration with the “San Matteo” Hospital in Pavia
and Abramo Agosti

. . .

E. Rocca (Pavia) Cahn-Hilliard-Keller-Segel for tumor growth June 7th, 2022 22 / 27



Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/
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Proof of existence: approximation

We need to sketch a regularization scheme preserving the coercivity of the energy

Assuming (for simplicity) constant mobilities, we propose:

ϕt −∆µ = S(ϕ, σ),

µ = −∆ϕ+ fn(ϕ)− χs,

st −∆γn(s) + χ div
(
γn(s)∇ϕ

)
= β(ϕ)(κ0γn(s)− κ∞γn(s)p).

Tn suitably designed truncation, γn = T−1
n , s = Tn(σ).

fn is constructed smoothing out the monotone part of f but keeping sufficiently fast
growth, in such a way that the quantity

Fn(ϕ) + Ln(σ) + χTn(σ)(1− ϕ), Ln(σ) =

∫ σ

0
T ′n(r) ln r dr ,

is uniformly (in n) coercive.
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Proof of existence: further remarks

The critical exponent p∗ = p∗(d) is derived using interpolation methods. We only
have a positive result (existence for p ≥ p∗). It would also be interesting to prove a
negative result (actual blowup for smaller p).

For weak solutions the interpretation of (nutr) is somehow delicate: the regularity
σ ∈ C 0([0,T ];W ∗) is obtained taking advantage of the estimate of σp ln(1 + σ) in
L1((0,T )× Ω), which provides uniform integrability of the right hand side term σp.

Recall that in a Keller-Segel setting, the energy estimate is obtained by testing
(nutr) by lnσ.

Still (nutr) needs to be integrated in time in the limit, but at least we avoid use of
more delicate tools like Helly’s principle.

An integration by parts is also needed to take the limit of − div(n(ϕ, σ)∇σ).
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Proof of regularity: keypoint for d = 3

µ = −∆ϕ+ f (ϕ)− χσ, (CH2)

σt −∆σ + χ div(σ∇ϕ) = β(σ)(σ − σ2). (nutr)

Test (CH2) by −(f (ϕ))5
−. By positivity of σ the last term is OK. Using also

monotonicity, we obtain f (ϕ)− ∈ L2(0,T ; L6(Ω)).

Test (nutr) by σ. The cross-diffusion term is moved to the right hand side and
treated as follows:

χ

∫
Ω

σ∇ϕ · ∇σ =
χ

2

∫
Ω

∇ϕ · ∇(σ2) = −χ
2

∫
Ω

∆ϕσ2

=
χ

2

∫
Ω

µσ2 − χ

2

∫
Ω

f (ϕ)σ2 +
λχ

2

∫
Ω

ϕσ2 +
χ2

2
‖σ‖3L3

I The second term is controlled thanks to the info on f (ϕ)−

I The fourth term is moved to the left hand side and estimated for small χ
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One remark on uniqueness

The proof of uniqueness is rather standard, and assumptions are not likely optimal.

We just want to comment on the assumption

either h is a constant,

or F ′′(ϕ1),F ′′(ϕ2) ∈ L2((0,T )× Ω).

The key point stands in the difference of (CH1):

∂t(ϕ1 − ϕ2)−∆(µ1 − µ2) = −m(ϕ1 − ϕ2) + h(ϕ1, σ1)− h(ϕ2, σ2)

For constant h (Cahn-Hilliard-Oono dynamics), the last term disappears, and we get
a linear relation for the spatial means. Proceeding similarly with
Giorgini-GRASSELLI-Miranville, we can treat these spatial means. Note, indeed,
that the difference of (CH2) has to be tested by (ϕ1 − ϕ2)− (ϕ1 − ϕ2)Ω due to the
singular potential.

Otherwise the result becomes strongly conditional, at least for logarthmic potentials.
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