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Motivation I. – cell division by contractile ring formation
A bulk–surface model for cell division via surface diffusion of stress
generated surface molecules (myosin II), see [Wittwer and Aland (2022)],
[Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)].

Experiment by E. Fischer-Friedrich (TU Dresden).
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Motivation II. – A geometric gradient flow
Consider the energy

E(Γ [X ], u) =
∫
Γ [X ]

G(u),

where
Γ [X ] is an evolving surface;
u is a concentration on the surface Γ [X ].

The (L2,H−1)-gradient flow of E yields the coupled geometric flow:

v = −g(u)HνΓ = V νΓ ,
∂•u + uVH = ∆Γ [X ]G ′(u),

with g(u) = G(u)− uG ′(u).

Derivation and analytic theory in [Bürger (2021)].
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A generalised coupled problem

A generalised geometric flow interacting with diffusion on Γ [X ]:

v = V ν, with V =−F (u,H),
∂•u + u (∇Γ [X ] · v) = ∇Γ [X ] ·

(
D(u)∇Γ [X ]u

)
,

where F (·, ·) is a suitable function.

Includes many classical flows:

F (u,H) = ∓H±, inverse / mean curvature flow,
F (u,H) = ∓H±α, powers of inverse / mean curvature (α > 0),
F (u,H) = −H + g(u), additive forcing,
F (u,H) = −g(u)H, [Bürger (2021)],

etc.
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Mean curvature flow and the coupled geometric flow
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Notations
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Evolving surfaces
Let Γ (t) ⊂ R3 be a closed surface parametrised by X over an initial
surface Γ 0:

Γ [X ] = Γ [X (·, t)] = {X (p, t) : p ∈ Γ 0}.
Surface velocity v satisfies, in x(t) = X (p, t), by

∂tx(t) = ∂tX (p, t) = v(X (p, t), t) = v(x(t), t).

The surface Γ [X (·, t)] is a collection of points x , where
x = X (p, t) is obtained by solving the above ODE from 0 to t for a fixed p.

Γ 0

time t = 0

p

Γ [X (·, t)]

time t

x

trajectory of p
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Differential operators on Γ [X ]

Outward normal vector: ν = νΓ [X ]

Material derivative: ∂•u(·, t) = d
dt
(
u(X (·, t), t)

)
Tangential gradient: ∇Γ [X ]u = ∇u − (∇u · ν)ν : Γ → R3

Laplace–Beltrami operator: ∆Γ [X ]u = ∇Γ [X ] · ∇Γ [X ]u
(for u : Γ → R, on a regular surface Γ ⊂ R3)
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Geometric quantities and mean curvature H

extended Weingarten map (3× 3 symmetric matrix)

A(x) = ∇Γ ν(x)

contains geometric informations
with eigenvalues: κ1 and κ2, the principal curvatures,

and 0 (with eigenvector ν)

they define

mean curvature H = tr(A) = κ1 + κ2,

and |A|2 = ‖A‖2F = κ21 + κ22.
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Two algorithms for mean curvature flow
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MCF and Dziuk’s algorithm

A regular surface Γ [X ] moving under mean curvature flow satisfies:

∂tX = v ◦ X ,
v = −Hν.

Heat-like equation, using that on any Γ : −Hν = ∆Γ xΓ (where xΓ = idΓ ):

∂tX (p, t) = ∆Γ [X ]xΓ [X ].

[Dziuk (1990)]

Simple and elegant algorithm;
computes all geometry from surface.
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A coupled system for mean curvature flow

Inspired by [Huisken (1984)], consider the coupled system:

v = −Hν,

∂•ν = ∆Γ [X ]ν + |A|2 ν,
∂•H = ∆Γ [X ]H + |A|2H,

∂tX = v ◦ X .

First convergence proof for MCF in [K., Li, and Lubich (2019)]:
optimal-order H1 norm error estimates (for evolving surface FEM of order
k ≥ 2 and BDF of order 2 to 5).

Leads to a less simple, but natural algorithm;
computes all geometry from evolution equations.
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Coupled system for
the interaction of mean curvature flow and diffusion
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Interaction of mean curvature flow and diffusion

Instead of mean curvature flow

v = (−H)νΓ ,

consider now the generalised mean curvature flow

v = V νΓ with V = −F (u,H),

with a given function F .

The real question is:
How robust is our approach from [KLL (2019)]?

Brief answer: Very!!
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Not-so-brief answer – recap mean curvature flow

Following [Huisken (1984)], for a regular surface Γ [X ] the identities hold:

∇ΓH = ∆Γ ν + |A|2ν, and (1)
∂•ν = −∇ΓV , (2)
∂•H = −∆ΓV − |A|2V . (3)

V = −H. (4a)

For example:

∂•ν
(2)= −∇ΓV
(4a)= −∇Γ (−H)
(1)= ∆Γ ν + |A|2ν.
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Not-so-brief answer – Repeating for V = −g(u)H
Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface Γ [X ] the identities hold:
∇ΓH = ∆Γ ν + |A|2ν, and (1)
∂•ν = −∇ΓV , (2)
∂•H = −∆ΓV − |A|2V . (3)

V = F (u,H) = −g(u)H. (4b)
For example

∂•ν
(2)= −∇ΓV
(4b)= −∇Γ (−g(u)H)

= g(u)∇ΓH + H∇Γ (g(u))
(1)= g(u)

(
∆Γ ν + |A|2ν

)
+ H∇Γ (g(u)). (/g(u) > 0)
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A coupled system for the interaction of MCF and diffusion
For V = −F (u,H) with inverse H = −K (u,V ) (for fixed u).
Coupled system with fundamental variables X , v , ν,V and u:

∂tX = v ◦ X ,

v = V ν,

∂2K ∂•ν = ∆Γ [X ]ν + |A|2ν + ∂1K ∇Γ [X ]u,
∂2K ∂•V = ∆Γ [X ]V + |A|2V − ∂1K ∂•u,

∂•u + u (∇Γ [X ] · v) = ∇Γ [X ] ·
(
D(u)∇Γ [X ]u

)
.

Still a natural algorithm,
which comes with a convergence analysis.
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Evolving surface finite elements
and matrix–vector formulation
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Semi-discrete problem
Evolving surface FEM [Dziuk and Elliott], [Demlow (2009)];
nodal values zh  z (for all finite element functions).

∂tXh = vh ◦ Xh,

with vh = Ĩh(Vhνh),

for wh = (νh,Vh)∫
Γh[x]

∂2Kh ∂
•
hwh · ϕw

h +
∫
Γh[x]
∇Γh[x]wh · ∇Γh[x]ϕ

w
h

=
∫
Γh[x]
|Ah|2wh · ϕw

h +
∫
Γh[x]

f (∂1Kh,wh, uh; ∂•huh) · ϕw
h ,

d
dt

(∫
Γh[x]

uh ϕ
u
h

)
+
∫
Γh[x]

D(uh)∇Γh[x]uh · ∇Γh[x]ϕ
u
h =

∫
Γh[x]

uh ∂
•
hϕ

u
h,
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Matrix–vector formulation

Upon setting w =
(
n,V

)T ∈ R4N , the semi-discrete problem is equivalent
to the following differential algebraic system:

ẋ = v,

v = V • n,

M(x,u,w)ẇ + A(x)w = f(x,w,u; u̇),

d
dt
(
M(x)u

)
+ A(x,u)u = 0.

Used for computation and analysis.
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Stability analysis:
relating surfaces and energy estimates
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Stability via energy estimates

A key issue is to compare different quantities on different meshes.
For this we need pointwise W 1,∞ norm bound on the position errors.

(i) Obtain pointwise H1 norm stability estimates over [0,T ∗],
using energy estimates,
testing with time derivatives of the errors

(fully discrete: first done in [KLL (2019)]).

(ii) Using an inverse estimate to establish bounds in the W 1,∞ norm.

(iii) Prove that in fact T ∗ = T .

Similarly to [K., Li, and Lubich (2019,2020)]
and [Binz and K. (2021)]
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Semi-discrete
error estimates
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Semi-discrete convergence estimates

Consider the semi-discretisation of the coupled system for the interaction
of mean curvature flow and diffusion using ESFEM of polynomial
degree k ≥ 2.
Let the solutions (X , v , ν,V , u) be sufficiently smooth.
Then for sufficiently small h the following estimates hold for 0 ≤ t ≤ T :

‖(xh(·, tn))L − idΓ (tn)‖H1(Γ (tn))3≤ Chk ,

‖(vh(·, tn))L − v(·, tn)‖H1(Γ (tn))3≤ Chk ,

‖(νh(·, tn))L − ν(·, tn)‖H1(Γ (tn))3≤ Chk ,

‖(Vh(·, tn))L − V (·, tn)‖H1(Γ (tn))≤ Chk ,

‖(uh(·, tn))L − u(·, tn)‖H1(Γ (tn))≤ Chk .

The constant C > 0 is independent of h, but depends on the solution and
on T .

[Elliott, Garcke, and K. (2022)]
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Numerical experiments
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Properties of MCF and the gradient flow
(i) Conservation of mean-convexity: [both]

if H(·, 0) ≥ 0, then H(·, t) > 0, ∀t.

(i) Loss of convexity: [MCF preserves]

if Γ 0 is convex, then Γ [X (·, t)] is not necessarily convex.

(iii) Formation of self-intersections are possible. [not for MCF]

(iv) Concentration properties:
d
dt

∫
Γ [X ]

u = 0, u(·, 0) ≥ 0 ⇒ u(·, t) ≥ 0, ∀t, min{u} ↗ .

[Huisken (1984)]
[Bürger (2021)]

All observable in numerical experiments.
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Loss of convexity, while preserving mean convexity

B. Kovács (TUM and UR) A convergent algorithm for MCF–diff 21 / 24



Loss of convexity, while preserving mean convexity
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Qualitative properties of the fully discrete solution
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Slow diffusion through a tight neck

cf. [Ecker (2008)]
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Self-intersection

Thank you for your attention!
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A key observations

We use dynamic variables to determine
the geometric quantities in the surface velocity vh ≈ Vhνh.

exact solution approximation geometry

surface: X (·, t) : Γ 0 → R3 Xh(·, t) : Γ 0
h → R3

(collected into x(t))

velocity: v : Γ [X ]→ R3 vh : Γh[x]→ R3

surface normal: ν : Γ [X ]→ S3 νh : Γh[x]→ R3 6= νΓh[x] ∈ S3

normal velocity: V : Γ [X ]→ R Vh : Γh[x]→ R 6= VΓh[x]
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Defects and comparing surfaces

B. Kovács (TUM and UR) A convergent algorithm for MCF–diff 24 / 24



Deriving error equations – identifying problems
Numerical scheme:

ẋ = v,
v = V • n,

M(x,u,w)ẇ + A(x)w = f(x,w,u; u̇),
d
dt
(
M(x)u

)
+ A(x,u)u = 0.

Exact solutions in the method:

ẋ∗ = v,
v∗ = V∗ • n∗ + dv,

M(x∗,u∗,w∗)ẇ∗ + A(x∗)w∗ = f(x∗,w∗,u∗; u̇∗) + M(x∗)dw,
d
dt
(
M(x∗)u∗

)
+ A(x∗,u∗)u∗ = M(x∗)du.
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Error equations and stability
We aim to prove stability:

‖errors(·, t)‖2 ≤ ‖errors(·, 0)‖2 +
∫ t

0
‖defects(·, s)‖2ds.

As discussed, the error equations contain some problematic terms:

M(x)−M(x∗) and A(x)− A(x∗),

M(x,u,w)ẇ−M(x∗,u∗,w∗)ẇ∗,

f(x,w,u; u̇)− f(x∗,w∗,u∗; u̇∗)
(f is only locally Lipschitz).

Suitable comparisons subject to the condition ‖ex‖W 1,∞(Γh[x∗]) ≤
1
4 .
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Relating different surfaces – I.

In order to study errors,
we need to compare quantities on different surfaces.

Let x ∈ R3N and x∗ ∈ R3N be two vectors which define the surfaces Γh[x]
and Γh[x∗].

Intermediate surfaces for θ ∈ [0, 1]:

ex = x− x∗  Γ θh = Γh[x∗ + θex],

and the corresponding errors:

eθx on Γh[x∗ + θex].

Γ [X] Γh[y]

Γh[x]

Γ θh

(Lift operation: uL
h)
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Relating different surfaces – II.
Key tools are: technical lemmas, and techniques, which relate different
evolving surfaces with one another.

For example:

‖w‖M(x∗+θex) ≤ c ‖w‖M(x∗),

‖∇Γ θh w
θ
h‖Lp(Γ θh ) ≤ cp ‖∇Γ 0

h
w0

h‖Lp(Γ 0
h ),

wT (M(x)−M(x∗))z ≤ c‖w‖M(x∗)‖z‖M(x∗),

etc.

[K., Li, Lubich and Power (2017)]
[K., Li, and Lubich (2019)]

[Elliott, Garcke and K. (2022)]

Under the important condition on ex: ‖e0x‖W 1,∞(Γh[x∗]) ≤
1
4 .
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‖w‖M(x∗+θex) ≤ c ‖w‖M(x∗),

‖∇Γ θh w
θ
h‖Lp(Γ θh ) ≤ cp ‖∇Γ 0

h
w0

h‖Lp(Γ 0
h ),

wT (M(x)−M(x∗))z ≤ c‖w‖M(x∗)‖z‖M(x∗),

etc.

[K., Li, Lubich and Power (2017)]
[K., Li, and Lubich (2019)]

[Elliott, Garcke and K. (2022)]

Under the important condition on ex: ‖e0x‖W 1,∞(Γh[x∗]) ≤
1
4 .
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Another typical lemma

Assume that ‖∇Γh[y ]e0h‖L∞(Γh[y]) ≤ 1
4 :

wT (M(x,u,V)−M(y,u,V)
)
z ≤ C ‖∇Γh[y ]e0h‖L∞(Γh[y]) ‖w‖M(y) ‖z‖M(y),

and

wT (M(x,u,V)−M(x,u∗,V∗)
)
z

≤ C
(
‖uh − u∗h‖L∞(Γh[y]) + ‖Vh − V ∗h ‖L∞(Γh[y])

)
‖w‖M(x) ‖z‖M(x),

The constant C > 0 is independent of h and t.

[Elliott, Garcke and K. (2022)].
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Main idea of fully discrete stability analysis
[KLL (2019)]
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Illustrate using a simple case
Consider the weak form of the heat equation (with appr. b.c.):

(u̇(t), ϕ) + (∇u(t),∇ϕ) = (f (t), ϕ),
u(0) = u0.

Energy estimates, let ϕ = u and ϕ = u̇:
d
dt ‖u‖

2
L2 + ‖∇u‖2L2 ≤ c‖f ‖2∗, (a)

‖u̇‖2L2 + d
dt ‖∇u‖

2
L2 ≤ c|f |2, (b)

then integrate in time.

“Repeat” for time discrete error equation, testing with ėn.

G-stability of [Dahlquist (1978)] and the multiplier techniques of
[Nevanlinna and Odeh (1981)]
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Dahlquist and Nevanlinna & Odeh

Dahlquist’s G-stability theory: Let δ(ζ) and µ(ζ) be polynomials of degree
at most k. If

Re δ(ζ)
µ(ζ) > 0, for |ζ| < 1,

then there exists G = (gij) ∈ Rk×k s.p.d. such that for all v0, . . . , vk ∈ RN

〈 k∑
i=0

δivk−i
∣∣∣ k∑

i=0
µivk−i

〉
≥

k∑
i ,j=1

gij〈vi | vj〉 −
k∑

i ,j=1
gij〈vi−1 | vj−1〉.

Multiplier technique of Nevanlinna & Odeh: If k ≤ 5, then there exists
0 ≤ η < 1 such that for δ(ζ) =

∑k
`=1

1
` (1− ζ)`,

Re δ(ζ)
1− ηζ > 0, for |ζ| < 1.

The smallest possible values of η is found to be
η = 0, 0, 0.0836, 0.2878, 0.8160 for k = 1, 2, . . . , 5, respectively.
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Energy estimates for BDF methods

Using G-stability of [Dahlquist (1978)] and the multiplier techniques of
[Nevanlinna and Odeh (1981)]:

Testing with multiplier un − ηun−1 (A-stable: η = 0, A(α)-stable: 0 < η < 1):

(u̇n, un − ηun−1) + (Aun, un − ηun−1) = (f n, un − ηun−1). (a)

for PDEs: [Lubich, Mansour and Venkataraman (2013)], [Akrivis and Lubich (2015)], ...

Testing with u̇n:

(u̇n, u̇n) + (Aun, u̇n) = (f n, u̇n). (b)

Where is the multiplier?
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Energy estimates for BDF methods

Using G-stability of [Dahlquist (1978)] and the multiplier techniques of
[Nevanlinna and Odeh (1981)]:

Testing with multiplier un − ηun−1 (A-stable: η = 0, A(α)-stable: 0 < η < 1):

(u̇n, un − ηun−1) + (Aun, un − ηun−1) = (f n, un − ηun−1). (a)

for PDEs: [Lubich, Mansour and Venkataraman (2013)], [Akrivis and Lubich (2015)], ...

Subtract the equations at time tn−1 from at time tn, and test with u̇n:

(u̇n − ηu̇n−1, u̇n) + (Aun − ηAun−1, u̇n) = (f n − ηf n−1, u̇n). (b)

Which yields a pointwise stability estimate in the strong norm.
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Sketch of stability proof
Using G-stability of [Dahlquist (1978)] and the multiplier techniques of
[Nevanlinna and Odeh (1981)] for the second term.

(ėn − ηėn−1, ėn) + (Aen − ηAen−1, ėn) = (dn − ηdn−1, ėn)

back
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Sketch of stability proof
Using G-stability of [Dahlquist (1978)] and the multiplier techniques of
[Nevanlinna and Odeh (1981)] for the second term.

(
1− η

2
)
|ėn|2 − η

2 |ė
n−1|2

+ 1
τ

q∑
i ,j=1

gij(Aen−q+i , en−q+j)− 1
τ

q∑
i ,j=1

gij(Aen−1−q+i , en−1−q+j)

≤ (ėn − ηėn−1, ėn) + (Aen − ηAen−1, ėn) = (dn − ηdn−1, ėn)

≤ ε|ėn|2 + c(|dn|2 + |dn−1|2)

(multiply by τ and sum up; Gronwall)
back
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